(*@|{}\input{article-ipre}|@*) (*@|\begin{document}|@*) (*@|\isaTitlePage{sTs} {\ } {\ } {\myIsaName}|@*) (*@|{}\input{article-ifront}|@*) (*@|\newpage|@*) (*@|%=======================================================================|@*) (*@|%========================== MAINMATTER =================================|@*) (*@|%=======================================================================|@*) (*@|%=======================================================================|@*) (*@|%========================== HEADER START ===============================|@*) (*@|\setcounter{\CTRONE}{0}|@*) (*@|\uONE{Theory Header}{0.0}{a}|@*) (*@|% VRBF sets the start number. DON'T DELETE AND REPLACE IT WITH A VRBL |@*) (*@|\VRBF|@*) theory sTs_ imports Main (*"../../pi/I"*)(*Declare, print, sledge, nitP cmds. Not really needed.*) begin (*@|\end{Verbatim}|@*) (*@|%========================== HEADER END =================================|@*) (*@|%=======================================================================|@*) text{*@|\aONE{Scratch}{1.0}{a}|@*} (*@|\VRBL|@*) --"Set Variable and Constant Naming Convention" --"Everything is a set, but some sets are viewed primarily as 'sets', and some primarily viewed as 'elements'." --"For the beginning parts of axiomatic-modeled set theory, lower case is used." --"This is to emphasize first-order formulas. At some point, there is a switch to uppercase to represent 'sets', with lowercase representing 'elements of sets'." --"Variables in the scope of '\' are called 'variables'." --"For naming, variables in the scope of '\' are loosely called 'constants'." --"Variables are generally taken from the end of the alphabet." --"Constants are generally taken from the beginning of the alphabet." --"Context should ultimately be used to interpret what names imply; naming conventions might be ignored at times." --"Set variables...............r, s, t, u, v." --"Element variables...........w, x, y, z." --"Set and element constants...a, b, c, d, etc." --"============================================================================" typedecl --"The primitive set type: everything is a set." \\<^isub>e\<^isub>t --"============================================================================" type_synonym --"Set property: Axiom schema of comprehension property type." \\<^isub>p\<^isub>t = "\\<^isub>e\<^isub>t \ bool" --"============================================================================" consts --"Set membership predicate: to be axiomatized by subsequent axioms." in\<^isub>\::"\\<^isub>e\<^isub>t \ \\<^isub>e\<^isub>t \ bool" (infixl "\\<^isub>\" 55) --"============================================================================" consts --"The empty set: naively named as a constant." \\<^isub>\::\\<^isub>e\<^isub>t --"============================================================================" axiomatization --"Axiom of existence: the empty set is empty." where \\<^isub>\\<^isub>e\<^isub>A:"\x\\\<^isub>e\<^isub>t. \(x \\<^isub>\ \\<^isub>\)" --"============================================================================" axiomatization --"Axiom of extention: set equality." where \\<^isub>e\<^isub>x\<^isub>A: "\u\\\<^isub>e\<^isub>t. \v\\\<^isub>e\<^isub>t. \x\\\<^isub>e\<^isub>t.((x \\<^isub>\ u \ x \\<^isub>\ v) \ u = v )" (*\\<^isub>e\<^isub>x\<^isub>A: "(x \\<^isub>\ u \ x \\<^isub>\ v) \ u = v"*) --"SHOW INFO-----------------------------------------------------------------" theorem show_info: "(\u\\\<^isub>e\<^isub>t. \v\\\<^isub>e\<^isub>t. \x\\\<^isub>e\<^isub>t.((x \\<^isub>\ u \ x \\<^isub>\ v) \ u = v )) = (\u\\\<^isub>e\<^isub>t. \v\\\<^isub>e\<^isub>t. \x\\\<^isub>e\<^isub>t.((x \\<^isub>\ u \ x \\<^isub>\ v) \ u = v ))" by(auto) thm show_info theorem show_info2: "((x \\<^isub>\ u \ x \\<^isub>\ v) \ u = v) = ((x \\<^isub>\ u \ x \\<^isub>\ v) \ u = v)" by(auto) thm show_info2 --"============================================================================" --"MarW EXPL-----------------------------------------------------------------" theorem example1: "x = y ==> y = z ==> x = z" by (rule trans) thm example1 theorem example2: "\x y z. x = y ==> y = z ==> x = z" by (rule trans) thm example2 --"============================================================================" theorem \\<^isub>\\<^isub>'is\<^isub>'unique --"The empty set is unique.": "\u.((\x. \(x \\<^isub>\ u) \ u = \\<^isub>\))" --"PROOF---------------------------------------------------------------------" by (metis \\<^isub>\\<^isub>e\<^isub>A \\<^isub>e\<^isub>x\<^isub>A) thm \\<^isub>\\<^isub>'is\<^isub>'unique --"============================================================================" theorem \\<^isub>\\<^isub>'is\<^isub>'unique2 --"The empty set is unique.": "(\x. \(x \\<^isub>\ u)) \ u = \\<^isub>\" --"PROOF---------------------------------------------------------------------" by (metis \\<^isub>\\<^isub>e\<^isub>A \\<^isub>e\<^isub>x\<^isub>A) thm \\<^isub>\\<^isub>'is\<^isub>'unique2 --"============================================================================" axiomatization --"Axiom of pairs: unordered pair set." where \\<^isub>u\<^isub>p\<^isub>A: "\u\\\<^isub>e\<^isub>t. \v\\\<^isub>e\<^isub>t. \a\\\<^isub>e\<^isub>t. \x\\\<^isub>e\<^isub>t.(x \\<^isub>\ a \ (x = u \ x = v))" --"============================================================================" axiomatization --"Axiom schema of comprehension: schema set." where \\<^isub>s\<^isub>c\<^isub>A: "\u\\\<^isub>e\<^isub>t. \P\\\<^isub>p\<^isub>t. \a\\\<^isub>e\<^isub>t. \x\\\<^isub>e\<^isub>t.(x \\<^isub>\ a \ (x \\<^isub>\ u \ P x))" text{*@|\uONE{Theory End}{99.0}{a}|@*} (*@|\VRBL|@*) end (*@|\end{Verbatim}|@*) (*@|%============================= END THEORY ==============================|@*) (*@|%=======================================================================|@*) (*@|%=======================================================================|@*) (*@|%========================== AUTO-GENERATED FILES =======================|@*) (*@|\newpage|@*) (*@|\uONE{[---sTs.thy---]}{0.1}{b}|@*) (*@|{}\input{sTs_Z_VerbMath.tex}|@*) (*@|\newpage|@*) (*@|\uONE{[---sTs.thy \textbackslash$<$cmds$>$---]}{0.1}{b}|@*) (*@|{}\input{sTs_Z_VerbNoConvert.tex}|@*) (*@|%========================== AUTO-GENERATED FILES =======================|@*) (*@|%=======================================================================|@*) (*@|%=======================================================================|@*) (*@|%========================== BACKMATTER & END ===========================|@*) (*@|\end{document}|@*) (*@|%========================== BACKMATTER & END ===========================|@*) (*@|%=======================================================================|@*) (*@|%=======================================================================|@*) (*@|%========================== WINEDT TREE INPUTS =========================|@*) (*@|%input "%@('2p');\pi\pi\iEti.tex"|@*) (*@|%========================== WINEDT TREE INPUTS =========================|@*) (*@|%=======================================================================|@*)