theory type_class_sidekick_helper imports Complex_Main begin section{*all: import BNF Complex_Main 2013-2*} subsection{*N-82, Z-106, Q-110, R-143, C-88*} print_classes subsection{*N,Z,_,_,_: Gcd*} term "x::'a::Gcd" print_locale Gcd print_dependencies Gcd (* class Gcd supersort: gcd parameters: Gcd :: ('a set \ 'a) Lcm :: ('a set \ 'a) instances: int :: Gcd nat :: Gcd *) subsection{*_,_,_,R,_: Inf*} term "x::'a::Inf" print_locale Inf print_dependencies Inf (* class Inf supersort: type parameters: Inf :: ('a set \ 'a) instances: Predicate.pred :: (type) Inf bool :: Inf filter :: (type) Inf fset :: (type) Inf fun :: (type, complete_lattice) Inf real :: Inf set :: (type) Inf *) subsection{*_,_,_,R,_: Sup*} term "x::'a::Sup" print_locale Sup print_dependencies Sup (* class Sup supersort: type parameters: Sup :: ('a set \ 'a) instances: Predicate.pred :: (type) Sup bool :: Sup filter :: (type) Sup fset :: (type) Sup fun :: (type, complete_lattice) Sup real :: Sup set :: (type) Sup *) subsection{*_,Z,Q,R,C: ab_group_add*} term "x::'a::ab_group_add" print_locale ab_group_add print_dependencies ab_group_add (* class ab_group_add supersort: {cancel_comm_monoid_add,group_add} parameters: instances: complex :: ab_group_add int :: ab_group_add integer :: ab_group_add rat :: ab_group_add real :: ab_group_add *) subsection{*N,Z,Q,R,C: ab_semigroup_add*} term "x::'a::ab_semigroup_add" print_locale ab_semigroup_add print_dependencies ab_semigroup_add (* class ab_semigroup_add supersort: semigroup_add parameters: instances: complex :: ab_semigroup_add int :: ab_semigroup_add integer :: ab_semigroup_add multiset :: (type) ab_semigroup_add nat :: ab_semigroup_add natural :: ab_semigroup_add rat :: ab_semigroup_add real :: ab_semigroup_add *) subsection{*N,Z,Q,R,C: ab_semigroup_mult*} term "x::'a::ab_semigroup_mult" print_locale ab_semigroup_mult print_dependencies ab_semigroup_mult (* class ab_semigroup_mult supersort: semigroup_mult parameters: instances: complex :: ab_semigroup_mult int :: ab_semigroup_mult integer :: ab_semigroup_mult nat :: ab_semigroup_mult natural :: ab_semigroup_mult rat :: ab_semigroup_mult real :: ab_semigroup_mult *) subsection{*_,Z,Q,R,_: abs*} term "x::'a::abs" print_locale abs print_dependencies abs (* class abs supersort: type parameters: abs :: ('a \ 'a) instances: int :: abs integer :: abs rat :: abs real :: abs *) subsection{*_,Z,Q,R,_: abs_if*} term "x::'a::abs_if" print_locale abs_if print_dependencies abs_if (* class abs_if supersort: {abs,minus,uminus,zero,ord} parameters: instances: int :: abs_if integer :: abs_if rat :: abs_if real :: abs_if *) subsection{*_,_,Q,R,_: archimedean_field*} term "x::'a::archimedean_field" print_locale archimedean_field print_dependencies archimedean_field (* class archimedean_field supersort: linordered_field parameters: instances: rat :: archimedean_field real :: archimedean_field *) subsection{*_,_,_,R,C: banach*} term "x::'a::banach" print_locale banach print_dependencies banach (* class banach supersort: {complete_space,real_normed_vector} parameters: instances: complex :: banach real :: banach *) subsection{*_,_,_,_,_: boolean_algebra*} term "x::'a::boolean_algebra" print_locale boolean_algebra print_dependencies boolean_algebra (* class boolean_algebra supersort: {minus,uminus,bounded_lattice,distrib_lattice} parameters: instances: Predicate.pred :: (type) boolean_algebra bool :: boolean_algebra fset :: (finite) boolean_algebra fun :: (type, boolean_algebra) boolean_algebra set :: (type) boolean_algebra *) subsection{*N,_,_,_,_: bot*} term "x::'a::bot" print_locale bot print_dependencies bot (* class bot supersort: type parameters: bot :: 'a instances: Predicate.pred :: (type) bot bool :: bot filter :: (type) bot fset :: (type) bot fun :: (type, bot) bot nat :: bot set :: (type) bot *) subsection{*_,_,_,_,_: bounded_forall*} term "x::'a::bounded_forall" print_locale bounded_forall print_dependencies bounded_forall (* class bounded_forall supersort: type parameters: bounded_forall :: (('a \ bool) \ (natural \ bool)) *) subsection{*_,_,_,_,_: bounded_lattice*} term "x::'a::bounded_lattice" print_locale bounded_lattice print_dependencies bounded_lattice (* class bounded_lattice supersort: {bounded_lattice_bot,bounded_lattice_top} parameters: instances: Predicate.pred :: (type) bounded_lattice bool :: bounded_lattice filter :: (type) bounded_lattice fset :: (finite) bounded_lattice fun :: (type, bounded_lattice) bounded_lattice set :: (type) bounded_lattice *) subsection{*_,_,_,_,_: bounded_lattice_bot*} term "x::'a::bounded_lattice_bot" print_locale bounded_lattice_bot print_dependencies bounded_lattice_bot (* class bounded_lattice_bot supersort: {bounded_semilattice_sup_bot,lattice} parameters: instances: Predicate.pred :: (type) bounded_lattice_bot bool :: bounded_lattice_bot filter :: (type) bounded_lattice_bot fset :: (type) bounded_lattice_bot fun :: (type, bounded_lattice) bounded_lattice_bot set :: (type) bounded_lattice_bot *) subsection{*_,_,_,_,_: bounded_lattice_top*} term "x::'a::bounded_lattice_top" print_locale bounded_lattice_top print_dependencies bounded_lattice_top (* class bounded_lattice_top supersort: {bounded_semilattice_inf_top,lattice} parameters: instances: Predicate.pred :: (type) bounded_lattice_top bool :: bounded_lattice_top filter :: (type) bounded_lattice_top fset :: (finite) bounded_lattice_top fun :: (type, bounded_lattice) bounded_lattice_top set :: (type) bounded_lattice_top *) subsection{*_,_,_,_,_: bounded_semilattice_inf_top*} term "x::'a::bounded_semilattice_inf_top" print_locale bounded_semilattice_inf_top print_dependencies bounded_semilattice_inf_top (* class bounded_semilattice_inf_top supersort: {semilattice_inf,order_top} parameters: instances: Predicate.pred :: (type) bounded_semilattice_inf_top bool :: bounded_semilattice_inf_top filter :: (type) bounded_semilattice_inf_top fset :: (finite) bounded_semilattice_inf_top fun :: (type, bounded_lattice) bounded_semilattice_inf_top set :: (type) bounded_semilattice_inf_top *) subsection{*_,_,_,_,_: bounded_semilattice_sup_bot*} term "x::'a::bounded_semilattice_sup_bot" print_locale bounded_semilattice_sup_bot print_dependencies bounded_semilattice_sup_bot (* class bounded_semilattice_sup_bot supersort: {semilattice_sup,order_bot} parameters: instances: Predicate.pred :: (type) bounded_semilattice_sup_bot bool :: bounded_semilattice_sup_bot filter :: (type) bounded_semilattice_sup_bot fset :: (type) bounded_semilattice_sup_bot fun :: (type, bounded_lattice) bounded_semilattice_sup_bot set :: (type) bounded_semilattice_sup_bot *) subsection{*N,Z,Q,R,C: cancel_ab_semigroup_add*} term "x::'a::cancel_ab_semigroup_add" print_locale cancel_ab_semigroup_add print_dependencies cancel_ab_semigroup_add (* class cancel_ab_semigroup_add supersort: {ab_semigroup_add,cancel_semigroup_add} parameters: instances: complex :: cancel_ab_semigroup_add int :: cancel_ab_semigroup_add integer :: cancel_ab_semigroup_add multiset :: (type) cancel_ab_semigroup_add nat :: cancel_ab_semigroup_add natural :: cancel_ab_semigroup_add rat :: cancel_ab_semigroup_add real :: cancel_ab_semigroup_add *) subsection{*N,Z,Q,R,C: cancel_comm_monoid_add*} term "x::'a::cancel_comm_monoid_add" print_locale cancel_comm_monoid_add print_dependencies cancel_comm_monoid_add (* class cancel_comm_monoid_add supersort: {cancel_ab_semigroup_add,comm_monoid_add} parameters: instances: complex :: cancel_comm_monoid_add int :: cancel_comm_monoid_add integer :: cancel_comm_monoid_add multiset :: (type) cancel_comm_monoid_add nat :: cancel_comm_monoid_add natural :: cancel_comm_monoid_add rat :: cancel_comm_monoid_add real :: cancel_comm_monoid_add *) subsection{*N,Z,Q,R,C: cancel_semigroup_add*} term "x::'a::cancel_semigroup_add" print_locale cancel_semigroup_add print_dependencies cancel_semigroup_add (* class cancel_semigroup_add supersort: semigroup_add parameters: instances: complex :: cancel_semigroup_add int :: cancel_semigroup_add integer :: cancel_semigroup_add multiset :: (type) cancel_semigroup_add nat :: cancel_semigroup_add natural :: cancel_semigroup_add rat :: cancel_semigroup_add real :: cancel_semigroup_add *) subsection{*_,_,_,_,_: ccpo*} term "x::'a::ccpo" print_locale ccpo print_dependencies ccpo (* class ccpo supersort: {Sup,order} parameters: instances: Predicate.pred :: (type) ccpo bool :: ccpo filter :: (type) ccpo fset :: (finite) ccpo fun :: (type, complete_lattice) ccpo set :: (type) ccpo *) subsection{*_,_,_,_,_: check_all*} term "x::'a::check_all" print_locale check_all print_dependencies check_all (* class check_all supersort: {term_of,enum} parameters: check_all_class.check_all :: ((('a \ (unit \ term)) \ (bool \ term list) option) \ (bool \ term list) option) check_all_class.enum_ term_of :: ('a itself \ (unit \ term list)) instances: Enum.finite_1 :: check_all Enum.finite_2 :: check_all Enum.finite_3 :: check_all Enum.finite_4 :: check_all bool :: check_all char :: check_all fun :: ({equal,check_all}, check_all) check_all nibble :: check_all option :: (check_all) check_all prod :: (check_all, check_all) check_all set :: (check_all) check_all sum :: (check_all, check_all) check_all unit :: check_all *) subsection{*N,Z,Q,R,C: comm_monoid_add*} term "x::'a::comm_monoid_add" print_locale comm_monoid_add print_dependencies comm_monoid_add (* class comm_monoid_add supersort: {ab_semigroup_add,monoid_add} parameters: instances: complex :: comm_monoid_add int :: comm_monoid_add integer :: comm_monoid_add multiset :: (type) comm_monoid_add nat :: comm_monoid_add natural :: comm_monoid_add rat :: comm_monoid_add real :: comm_monoid_add *) subsection{*N,_,_,_,_: comm_monoid_diff*} term "x::'a::comm_monoid_diff" print_locale comm_monoid_diff print_dependencies comm_monoid_diff (* class comm_monoid_diff supersort: {comm_monoid_add,minus} parameters: instances: multiset :: (type) comm_monoid_diff nat :: comm_monoid_diff natural :: comm_monoid_diff *) subsection{*N,Z,Q,R,C: comm_monoid_mult*} term "x::'a::comm_monoid_mult" print_locale comm_monoid_mult print_dependencies comm_monoid_mult (* class comm_monoid_mult supersort: {ab_semigroup_mult,monoid_mult} parameters: instances: complex :: comm_monoid_mult int :: comm_monoid_mult integer :: comm_monoid_mult nat :: comm_monoid_mult natural :: comm_monoid_mult rat :: comm_monoid_mult real :: comm_monoid_mult *) subsection{*_,Z,Q,R,C: comm_ring*} term "x::'a::comm_ring" print_locale comm_ring print_dependencies comm_ring (* class comm_ring supersort: {comm_semiring_0_cancel,ring} parameters: instances: complex :: comm_ring int :: comm_ring integer :: comm_ring rat :: comm_ring real :: comm_ring *) subsection{*_,Z,Q,R,C: comm_ring_1*} term "x::'a::comm_ring_1" print_locale comm_ring_1 print_dependencies comm_ring_1 (* class comm_ring_1 supersort: {comm_ring,comm_semiring_1_cancel,ring_1} parameters: instances: complex :: comm_ring_1 int :: comm_ring_1 integer :: comm_ring_1 rat :: comm_ring_1 real :: comm_ring_1 *) subsection{*N,Z,Q,R,C: comm_semiring*} term "x::'a::comm_semiring" print_locale comm_semiring print_dependencies comm_semiring (* class comm_semiring supersort: {ab_semigroup_mult,semiring} parameters: instances: complex :: comm_semiring int :: comm_semiring integer :: comm_semiring nat :: comm_semiring natural :: comm_semiring rat :: comm_semiring real :: comm_semiring *) subsection{*N,Z,Q,R,C: comm_semiring_0*} term "x::'a::comm_semiring_0" print_locale comm_semiring_0 print_dependencies comm_semiring_0 (* class comm_semiring_0 supersort: {comm_semiring,semiring_0} parameters: instances: complex :: comm_semiring_0 int :: comm_semiring_0 integer :: comm_semiring_0 nat :: comm_semiring_0 natural :: comm_semiring_0 rat :: comm_semiring_0 real :: comm_semiring_0 *) subsection{*N,Z,Q,R,C: comm_semiring_0_cancel*} term "x::'a::comm_semiring_0_cancel" print_locale comm_semiring_0_cancel print_dependencies comm_semiring_0_cancel (* class comm_semiring_0_cancel supersort: {comm_semiring_0,semiring_0_cancel} parameters: instances: complex :: comm_semiring_0_cancel int :: comm_semiring_0_cancel integer :: comm_semiring_0_cancel nat :: comm_semiring_0_cancel natural :: comm_semiring_0_cancel rat :: comm_semiring_0_cancel real :: comm_semiring_0_cancel *) subsection{*N,Z,Q,R,C: comm_semiring_1*} term "x::'a::comm_semiring_1" print_locale comm_semiring_1 print_dependencies comm_semiring_1 (* class comm_semiring_1 supersort: {comm_monoid_mult,comm_semiring_0,dvd,semiring_1} parameters: instances: complex :: comm_semiring_1 int :: comm_semiring_1 integer :: comm_semiring_1 nat :: comm_semiring_1 natural :: comm_semiring_1 rat :: comm_semiring_1 real :: comm_semiring_1 *) subsection{*N,Z,Q,R,C: comm_semiring_1_cancel*} term "x::'a::comm_semiring_1_cancel" print_locale comm_semiring_1_cancel print_dependencies comm_semiring_1_cancel (* class comm_semiring_1_cancel supersort: {comm_semiring_0_cancel,comm_semiring_1,semiring_1_cancel} parameters: instances: complex :: comm_semiring_1_cancel int :: comm_semiring_1_cancel integer :: comm_semiring_1_cancel nat :: comm_semiring_1_cancel natural :: comm_semiring_1_cancel rat :: comm_semiring_1_cancel real :: comm_semiring_1_cancel *) subsection{*N,Z,Q,R,C: comm_semiring_1_cancel_crossproduct*} term "x::'a::comm_semiring_1_cancel_crossproduct" print_locale comm_semiring_1_cancel_crossproduct print_dependencies comm_semiring_1_cancel_crossproduct (* class comm_semiring_1_cancel_crossproduct supersort: comm_semiring_1_cancel parameters: instances: complex :: comm_semiring_1_cancel_crossproduct int :: comm_semiring_1_cancel_crossproduct integer :: comm_semiring_1_cancel_crossproduct nat :: comm_semiring_1_cancel_crossproduct rat :: comm_semiring_1_cancel_crossproduct real :: comm_semiring_1_cancel_crossproduct *) subsection{*_,_,_,_,_: complete_boolean_algebra*} term "x::'a::complete_boolean_algebra" print_locale complete_boolean_algebra print_dependencies complete_boolean_algebra (* class complete_boolean_algebra supersort: {complete_distrib_lattice,boolean_algebra} parameters: instances: Predicate.pred :: (type) complete_boolean_algebra bool :: complete_boolean_algebra fset :: (finite) complete_boolean_algebra fun :: (type, complete_boolean_algebra) complete_boolean_algebra set :: (type) complete_boolean_algebra *) subsection{*_,_,_,_,_: complete_distrib_lattice*} term "x::'a::complete_distrib_lattice" print_locale complete_distrib_lattice print_dependencies complete_distrib_lattice (* class complete_distrib_lattice supersort: {complete_lattice,distrib_lattice} parameters: instances: Predicate.pred :: (type) complete_distrib_lattice bool :: complete_distrib_lattice fset :: (finite) complete_distrib_lattice fun :: (type, complete_distrib_lattice) complete_distrib_lattice set :: (type) complete_distrib_lattice *) subsection{*_,_,_,_,_: complete_lattice*} term "x::'a::complete_lattice" print_locale complete_lattice print_dependencies complete_lattice (* class complete_lattice supersort: {ccpo,conditionally_complete_lattice,bounded_lattice} parameters: instances: Predicate.pred :: (type) complete_lattice bool :: complete_lattice filter :: (type) complete_lattice fset :: (finite) complete_lattice fun :: (type, complete_lattice) complete_lattice set :: (type) complete_lattice *) subsection{*_,_,_,_,_: complete_linorder*} term "x::'a::complete_linorder" print_locale complete_linorder print_dependencies complete_linorder (* class complete_linorder supersort: {complete_distrib_lattice,linorder} parameters: *) subsection{*_,_,_,R,C: complete_space*} term "x::'a::complete_space" print_locale complete_space print_dependencies complete_space (* class complete_space supersort: metric_space parameters: instances: complex :: complete_space real :: complete_space *) subsection{*_,_,_,R,_: conditionally_complete_lattice*} term "x::'a::conditionally_complete_lattice" print_locale conditionally_complete_lattice print_dependencies conditionally_complete_lattice (* class conditionally_complete_lattice supersort: {Inf,Sup,lattice} parameters: instances: Predicate.pred :: (type) conditionally_complete_lattice bool :: conditionally_complete_lattice filter :: (type) conditionally_complete_lattice fset :: (type) conditionally_complete_lattice fun :: (type, complete_lattice) conditionally_complete_lattice real :: conditionally_complete_lattice set :: (type) conditionally_complete_lattice *) subsection{*_,_,_,R,_: conditionally_complete_linorder*} term "x::'a::conditionally_complete_linorder" print_locale conditionally_complete_linorder print_dependencies conditionally_complete_linorder (* class conditionally_complete_linorder supersort: {conditionally_complete_lattice,linorder} parameters: instances: real :: conditionally_complete_linorder *) subsection{*N,Z,Q,_,_: countable*} (*term "x::'a::countable" print_locale countable print_dependencies countable*) (* class countable supersort: type parameters: instances: Enum.finite_1 :: countable Enum.finite_2 :: countable Enum.finite_3 :: countable Enum.finite_4 :: countable Enum.finite_5 :: countable String.literal :: countable bool :: countable char :: countable fset :: (finite) countable fun :: (finite, countable) countable int :: countable list :: (countable) countable nat :: countable nibble :: countable option :: (countable) countable prod :: (countable, countable) countable rat :: countable set :: (finite) countable sum :: (countable, countable) countable typerep :: countable unit :: countable *) subsection{*_,_,_,_,_: default*} term "x::'a::default" print_locale default print_dependencies default (* class default supersort: type parameters: default :: 'a instances: unit :: default *) subsection{*_,_,Q,R,_: dense_linorder*} term "x::'a::dense_linorder" print_locale dense_linorder print_dependencies dense_linorder (* class dense_linorder supersort: {dense_order,linorder} parameters: instances: rat :: dense_linorder real :: dense_linorder *) subsection{*_,_,Q,R,_: dense_order*} term "x::'a::dense_order" print_locale dense_order print_dependencies dense_order (* class dense_order supersort: order parameters: instances: rat :: dense_order real :: dense_order *) subsection{*_,_,_,R,C: dist*} term "x::'a::dist" print_locale dist print_dependencies dist (* class dist supersort: type parameters: dist :: ('a \ ('a \ real)) instances: complex :: dist real :: dist *) subsection{*_,_,_,R,C: dist_norm*} term "x::'a::dist_norm" print_locale dist_norm print_dependencies dist_norm (* class dist_norm supersort: {minus,dist,norm} parameters: instances: complex :: dist_norm real :: dist_norm *) subsection{*N,Z,Q,R,_: distrib_lattice*} term "x::'a::distrib_lattice" print_locale distrib_lattice print_dependencies distrib_lattice (* class distrib_lattice supersort: lattice parameters: instances: Predicate.pred :: (type) distrib_lattice bool :: distrib_lattice fset :: (type) distrib_lattice fun :: (type, distrib_lattice) distrib_lattice int :: distrib_lattice nat :: distrib_lattice rat :: distrib_lattice real :: distrib_lattice set :: (type) distrib_lattice *) subsection{*N,Z,_,_,_: div*} term "x::'a::Divides.div" print_locale div print_dependencies div (* class div supersort: dvd parameters: div :: ('a \ ('a \ 'a)) mod :: ('a \ ('a \ 'a)) instances: int :: div integer :: div nat :: div natural :: div *) subsection{*_,_,Q,R,C: division_ring*} term "x::'a::division_ring" print_locale division_ring print_dependencies division_ring (* class division_ring supersort: {inverse,ring_1_no_zero_divisors} parameters: instances: complex :: division_ring rat :: division_ring real :: division_ring *) subsection{*_,_,Q,R,C: division_ring_inverse_zero*} term "x::'a::division_ring_inverse_zero" print_locale division_ring_inverse_zero print_dependencies division_ring_inverse_zero (* class division_ring_inverse_zero supersort: division_ring parameters: instances: complex :: division_ring_inverse_zero rat :: division_ring_inverse_zero real :: division_ring_inverse_zero *) subsection{*N,Z,Q,R,C: dvd*} term "x::'a::Rings.dvd" print_locale dvd print_dependencies dvd (* class dvd supersort: times parameters: instances: complex :: dvd int :: dvd integer :: dvd nat :: dvd natural :: dvd rat :: dvd real :: dvd *) subsection{*_,_,_,_,_: enum*} term "x::'a::enum" print_locale enum print_dependencies enum (* class enum supersort: finite parameters: enum_class.enum :: 'a list enum_class.enum_all :: (('a \ bool) \ bool) enum_class.enum_ex :: (('a \ bool) \ bool) instances: Enum.finite_1 :: enum Enum.finite_2 :: enum Enum.finite_3 :: enum Enum.finite_4 :: enum Enum.finite_5 :: enum bool :: enum char :: enum fun :: (enum, enum) enum nibble :: enum option :: (enum) enum prod :: (enum, enum) enum set :: (enum) enum sum :: (enum, enum) enum unit :: enum *) subsection{*N,Z,Q,R,C: equal*} term "x::'a::equal" print_locale equal print_dependencies equal (* class equal supersort: type parameters: equal_class.equal :: ('a \ ('a \ bool)) instances: ??.Quickcheck_Narrowing.narrowing_cons :: (type) equal ??.Quickcheck_Narrowing.narrowing_ term :: equal ??.Quickcheck_Narrowing.narrowing_type :: equal ??.Quickcheck_Narrowing.property :: equal Enum.finite_1 :: equal Enum.finite_2 :: equal Enum.finite_3 :: equal Enum.finite_4 :: equal Enum.finite_5 :: equal Nitpick.fun_box :: (type, type) equal Nitpick.pair_box :: (type, type) equal Nitpick.word :: (type) equal Predicate.pred :: (type) equal Predicate.seq :: (type) equal Quickcheck_Exhaustive.three_valued :: (type) equal Quickcheck_Exhaustive.unknown :: (type) equal Quickcheck_Narrowing.cfun :: (type) equal Quickcheck_Narrowing.ffun :: (type, type) equal SMT.pattern :: equal String.literal :: equal bool :: equal char :: equal complex :: equal fset :: (equal) equal fun :: (enum, equal) equal int :: equal integer :: equal itself :: (type) equal lazy_sequence :: (type) equal list :: (type) equal multiset :: (equal) equal nat :: equal natural :: equal nibble :: equal num :: equal option :: (type) equal prod :: (type, type) equal rat :: equal real :: equal set :: (equal) equal sum :: (type, type) equal sumbool :: equal term :: equal tuple_isomorphism :: (type, type, type) equal typerep :: equal unit :: equal *) subsection{*N,Z,_,_,_: even_odd*} term "x::'a::even_odd" print_locale even_odd print_dependencies even_odd (* class even_odd supersort: type parameters: even :: ('a \ bool) instances: int :: even_odd nat :: even_odd *) subsection{*N,Z,Q,R,_: exhaustive*} term "x::'a::exhaustive" print_locale exhaustive print_dependencies exhaustive (* class exhaustive supersort: term_of parameters: exhaustive_class.exhaustive :: (('a \ (bool \ term list) option) \ (natural \ (bool \ term list) option)) instances: fun :: ({equal,exhaustive}, exhaustive) exhaustive int :: exhaustive integer :: exhaustive nat :: exhaustive natural :: exhaustive prod :: (exhaustive, exhaustive) exhaustive rat :: exhaustive real :: exhaustive set :: (exhaustive) exhaustive *) subsection{*N,Z,_,_,_: fact*} term "x::'a::fact" print_locale fact print_dependencies fact (* class fact supersort: type parameters: fact :: ('a \ 'a) instances: int :: fact nat :: fact *) subsection{*_,_,_,_,_: fast_exhaustive*} term "x::'a::fast_exhaustive" print_locale fast_exhaustive print_dependencies fast_exhaustive (* class fast_exhaustive supersort: term_of parameters: fast_exhaustive :: (('a \ unit) \ (natural \ unit)) *) subsection{*_,_,Q,R,C: field*} term "x::'a::field" print_locale field print_dependencies field (* class field supersort: {division_ring,idom} parameters: instances: complex :: field rat :: field real :: field *) subsection{*_,_,Q,R,C: field_char_0*} term "x::'a::field_char_0" print_locale field_char_0 print_dependencies field_char_0 (* class field_char_0 supersort: {field,ring_char_0} parameters: instances: complex :: field_char_0 rat :: field_char_0 real :: field_char_0 *) subsection{*_,_,Q,R,C: field_inverse_zero*} term "x::'a::field_inverse_zero" print_locale field_inverse_zero print_dependencies field_inverse_zero (* class field_inverse_zero supersort: {division_ring_inverse_zero,field} parameters: instances: complex :: field_inverse_zero rat :: field_inverse_zero real :: field_inverse_zero *) subsection{*_,_,_,_,_: finite*} term "x::'a::finite" print_locale finite print_dependencies finite (* class finite supersort: countable parameters: instances: Enum.finite_1 :: finite Enum.finite_2 :: finite Enum.finite_3 :: finite Enum.finite_4 :: finite Enum.finite_5 :: finite bool :: finite char :: finite fset :: (finite) finite fun :: (finite, finite) finite nibble :: finite option :: (finite) finite prod :: (finite, finite) finite set :: (finite) finite sum :: (finite, finite) finite unit :: finite *) subsection{*_,_,_,R,C: first_countable_topology*} term "x::'a::first_countable_topology" print_locale first_countable_topology print_dependencies first_countable_topology (* class first_countable_topology supersort: topological_space parameters: instances: complex :: first_countable_topology real :: first_countable_topology *) subsection{*_,_,Q,R,_: floor_ceiling*} term "x::'a::floor_ceiling" print_locale floor_ceiling print_dependencies floor_ceiling (* class floor_ceiling supersort: archimedean_field parameters: floor :: ('a \ int) instances: rat :: floor_ceiling real :: floor_ceiling *) subsection{*N,Z,Q,R,C: full_exhaustive*} term "x::'a::full_exhaustive" print_locale full_exhaustive print_dependencies full_exhaustive (* class full_exhaustive supersort: term_of parameters: full_exhaustive_class.full_exhaustive :: ((('a \ (unit \ term)) \ (bool \ term list) option) \ (natural \ (bool \ term list) option)) instances: ??.Quickcheck_Narrowing.narrowing_cons :: (full_exhaustive) full_exhaustive ??.Quickcheck_Narrowing.narrowing_ term :: full_exhaustive ??.Quickcheck_Narrowing.narrowing_type :: full_exhaustive Enum.finite_1 :: full_exhaustive Enum.finite_2 :: full_exhaustive Enum.finite_3 :: full_exhaustive Enum.finite_4 :: full_exhaustive Enum.finite_5 :: full_exhaustive Nitpick.fun_box :: ({equal,full_exhaustive}, full_exhaustive) full_exhaustive Nitpick.pair_box :: (full_exhaustive, full_exhaustive) full_exhaustive Nitpick.word :: (full_exhaustive) full_exhaustive Predicate.pred :: ({equal,full_exhaustive}) full_exhaustive Predicate.seq :: ({equal,full_exhaustive}) full_exhaustive Quickcheck_Exhaustive.three_valued :: (full_exhaustive) full_exhaustive Quickcheck_Exhaustive.unknown :: (full_exhaustive) full_exhaustive Quickcheck_Narrowing.cfun :: (full_exhaustive) full_exhaustive Quickcheck_Narrowing.ffun :: (full_exhaustive, full_exhaustive) full_exhaustive SMT.pattern :: full_exhaustive bool :: full_exhaustive char :: full_exhaustive complex :: full_exhaustive fun :: ({equal,full_exhaustive}, full_exhaustive) full_exhaustive int :: full_exhaustive integer :: full_exhaustive lazy_sequence :: (full_exhaustive) full_exhaustive list :: (full_exhaustive) full_exhaustive multiset :: (full_exhaustive) full_exhaustive nat :: full_exhaustive natural :: full_exhaustive nibble :: full_exhaustive num :: full_exhaustive option :: (full_exhaustive) full_exhaustive prod :: (full_exhaustive, full_exhaustive) full_exhaustive rat :: full_exhaustive real :: full_exhaustive set :: (full_exhaustive) full_exhaustive sum :: (full_exhaustive, full_exhaustive) full_exhaustive sumbool :: full_exhaustive term :: full_exhaustive tuple_isomorphism :: ({equal,full_exhaustive}, full_exhaustive, full_exhaustive) full_exhaustive unit :: full_exhaustive *) subsection{*N,Z,_,_,_: gcd*} term "x::'a::gcd" print_locale gcd print_dependencies gcd (* class gcd supersort: {one,zero,dvd} parameters: gcd :: ('a \ ('a \ 'a)) lcm :: ('a \ ('a \ 'a)) instances: int :: gcd nat :: gcd *) subsection{*_,Z,Q,R,C: group_add*} term "x::'a::group_add" print_locale group_add print_dependencies group_add (* class group_add supersort: {cancel_semigroup_add,minus,monoid_add,uminus} parameters: instances: complex :: group_add int :: group_add integer :: group_add rat :: group_add real :: group_add *) subsection{*_,Z,Q,R,C: idom*} term "x::'a::idom" print_locale idom print_dependencies idom (* class idom supersort: {comm_ring_1,ring_1_no_zero_divisors,comm_semiring_1_cancel_crossproduct} parameters: instances: complex :: idom int :: idom integer :: idom rat :: idom real :: idom *) subsection{*N,Z,Q,R,_: inf*} term "x::'a::inf" print_locale inf print_dependencies inf (* class inf supersort: type parameters: inf :: ('a \ ('a \ 'a)) instances: Predicate.pred :: (type) inf bool :: inf filter :: (type) inf fset :: (type) inf fun :: (type, semilattice_inf) inf int :: inf multiset :: (type) inf nat :: inf rat :: inf real :: inf set :: (type) inf *) subsection{*_,_,Q,R,C: inverse*} term "x::'a::inverse" print_locale inverse print_dependencies inverse (* class inverse supersort: type parameters: inverse :: ('a \ 'a) divide :: ('a \ ('a \ 'a)) instances: complex :: inverse rat :: inverse real :: inverse *) subsection{*_,_,_,_,_: is_testable*} term "x::'a::is_testable" print_locale is_testable print_dependencies is_testable (* class is_testable supersort: type parameters: instances: bool :: is_testable fun :: ({ term_of,narrowing,partial_ term_of}, is_testable) is_testable *) subsection{*N,Z,Q,R,_: lattice*} term "x::'a::lattice" print_locale lattice print_dependencies lattice (* class lattice supersort: {semilattice_inf,semilattice_sup} parameters: instances: Predicate.pred :: (type) lattice bool :: lattice filter :: (type) lattice fset :: (type) lattice fun :: (type, lattice) lattice int :: lattice nat :: lattice rat :: lattice real :: lattice set :: (type) lattice *) subsection{*_,_,_,R,_: linear_continuum*} term "x::'a::linear_continuum" print_locale linear_continuum print_dependencies linear_continuum (* class linear_continuum supersort: {conditionally_complete_linorder,dense_linorder} parameters: instances: real :: linear_continuum *) subsection{*_,_,_,R,_: linear_continuum_topology*} term "x::'a::linear_continuum_topology" print_locale linear_continuum_topology print_dependencies linear_continuum_topology (* class linear_continuum_topology supersort: {linear_continuum,linorder_topology,perfect_space} parameters: instances: real :: linear_continuum_topology *) subsection{*N,Z,Q,R,_: linorder*} term "x::'a::linorder" print_locale linorder print_dependencies linorder (* class linorder supersort: order parameters: instances: Enum.finite_1 :: linorder Enum.finite_2 :: linorder Enum.finite_3 :: linorder bool :: linorder int :: linorder integer :: linorder nat :: linorder natural :: linorder num :: linorder rat :: linorder real :: linorder *) subsection{*_,_,_,R,_: linorder_topology*} term "x::'a::linorder_topology" print_locale linorder_topology print_dependencies linorder_topology (* class linorder_topology supersort: {linorder,order_topology,t2_space} parameters: instances: real :: linorder_topology *) subsection{*_,Z,Q,R,_: linordered_ab_group_add*} term "x::'a::linordered_ab_group_add" print_locale linordered_ab_group_add print_dependencies linordered_ab_group_add (* class linordered_ab_group_add supersort: {linordered_cancel_ab_semigroup_add,ordered_ab_group_add} parameters: instances: int :: linordered_ab_group_add integer :: linordered_ab_group_add rat :: linordered_ab_group_add real :: linordered_ab_group_add *) subsection{*N,Z,Q,R,_: linordered_ab_semigroup_add*} term "x::'a::linordered_ab_semigroup_add" print_locale linordered_ab_semigroup_add print_dependencies linordered_ab_semigroup_add (* class linordered_ab_semigroup_add supersort: {ordered_ab_semigroup_add,linorder} parameters: instances: int :: linordered_ab_semigroup_add integer :: linordered_ab_semigroup_add nat :: linordered_ab_semigroup_add natural :: linordered_ab_semigroup_add rat :: linordered_ab_semigroup_add real :: linordered_ab_semigroup_add *) subsection{*N,Z,Q,R,_: linordered_cancel_ab_semigroup_add*} term "x::'a::linordered_cancel_ab_semigroup_add" print_locale linordered_cancel_ab_semigroup_add print_dependencies linordered_cancel_ab_semigroup_add (* class linordered_cancel_ab_semigroup_add supersort: {linordered_ab_semigroup_add,ordered_ab_semigroup_add_imp_le} parameters: instances: int :: linordered_cancel_ab_semigroup_add integer :: linordered_cancel_ab_semigroup_add nat :: linordered_cancel_ab_semigroup_add natural :: linordered_cancel_ab_semigroup_add rat :: linordered_cancel_ab_semigroup_add real :: linordered_cancel_ab_semigroup_add *) subsection{*N,Z,Q,R,_: linordered_comm_semiring_strict*} term "x::'a::linordered_comm_semiring_strict" print_locale linordered_comm_semiring_strict print_dependencies linordered_comm_semiring_strict (* class linordered_comm_semiring_strict supersort: {linordered_semiring_strict,ordered_cancel_comm_semiring} parameters: instances: int :: linordered_comm_semiring_strict integer :: linordered_comm_semiring_strict nat :: linordered_comm_semiring_strict rat :: linordered_comm_semiring_strict real :: linordered_comm_semiring_strict *) subsection{*_,_,Q,R,_: linordered_field*} term "x::'a::linordered_field" print_locale linordered_field print_dependencies linordered_field (* class linordered_field supersort: {unbounded_dense_linorder,field_char_0,linordered_idom} parameters: instances: rat :: linordered_field real :: linordered_field *) subsection{*_,_,Q,R,_: linordered_field_inverse_zero*} term "x::'a::linordered_field_inverse_zero" print_locale linordered_field_inverse_zero print_dependencies linordered_field_inverse_zero (* class linordered_field_inverse_zero supersort: {field_inverse_zero,linordered_field} parameters: instances: rat :: linordered_field_inverse_zero real :: linordered_field_inverse_zero *) subsection{*_,Z,Q,R,_: linordered_idom*} term "x::'a::linordered_idom" print_locale linordered_idom print_dependencies linordered_idom (* class linordered_idom supersort: {sgn_if,ring_char_0,idom,linordered_ring_strict,linordered_semidom,linordered_semiring_1_strict,ordered_comm_ring,ordered_ring_abs} parameters: instances: int :: linordered_idom integer :: linordered_idom rat :: linordered_idom real :: linordered_idom *) subsection{*_,Z,Q,R,_: linordered_ring*} term "x::'a::linordered_ring" print_locale linordered_ring print_dependencies linordered_ring (* class linordered_ring supersort: {abs_if,linordered_ab_group_add,ordered_ab_group_add_abs,linordered_semiring,ordered_ring} parameters: instances: int :: linordered_ring integer :: linordered_ring rat :: linordered_ring real :: linordered_ring *) subsection{*_,Z,Q,R,_: linordered_ring_strict*} term "x::'a::linordered_ring_strict" print_locale linordered_ring_strict print_dependencies linordered_ring_strict (* class linordered_ring_strict supersort: {linordered_ring,linordered_semiring_strict,ring_no_zero_divisors} parameters: instances: int :: linordered_ring_strict integer :: linordered_ring_strict rat :: linordered_ring_strict real :: linordered_ring_strict *) subsection{*N,Z,Q,R,_: linordered_semidom*} term "x::'a::linordered_semidom" print_locale linordered_semidom print_dependencies linordered_semidom (* class linordered_semidom supersort: {semiring_char_0,comm_semiring_1_cancel,linordered_comm_semiring_strict} parameters: instances: int :: linordered_semidom integer :: linordered_semidom nat :: linordered_semidom rat :: linordered_semidom real :: linordered_semidom *) subsection{*N,Z,Q,R,_: linordered_semiring*} term "x::'a::linordered_semiring" print_locale linordered_semiring print_dependencies linordered_semiring (* class linordered_semiring supersort: {linordered_cancel_ab_semigroup_add,ordered_comm_monoid_add,ordered_cancel_semiring} parameters: instances: int :: linordered_semiring integer :: linordered_semiring nat :: linordered_semiring natural :: linordered_semiring rat :: linordered_semiring real :: linordered_semiring *) subsection{*_,Z,Q,R,_: linordered_semiring_1*} term "x::'a::linordered_semiring_1" print_locale linordered_semiring_1 print_dependencies linordered_semiring_1 (* class linordered_semiring_1 supersort: {linordered_semiring,semiring_1} parameters: instances: int :: linordered_semiring_1 integer :: linordered_semiring_1 rat :: linordered_semiring_1 real :: linordered_semiring_1 *) subsection{*_,Z,Q,R,_: linordered_semiring_1_strict*} term "x::'a::linordered_semiring_1_strict" print_locale linordered_semiring_1_strict print_dependencies linordered_semiring_1_strict (* class linordered_semiring_1_strict supersort: {linordered_semiring_1,linordered_semiring_strict} parameters: instances: int :: linordered_semiring_1_strict integer :: linordered_semiring_1_strict rat :: linordered_semiring_1_strict real :: linordered_semiring_1_strict *) subsection{*N,Z,Q,R,_: linordered_semiring_strict*} term "x::'a::linordered_semiring_strict" print_locale linordered_semiring_strict print_dependencies linordered_semiring_strict (* class linordered_semiring_strict supersort: linordered_semiring parameters: instances: int :: linordered_semiring_strict integer :: linordered_semiring_strict nat :: linordered_semiring_strict rat :: linordered_semiring_strict real :: linordered_semiring_strict *) subsection{*_,_,_,R,C: metric_space*} term "x::'a::metric_space" print_locale metric_space print_dependencies metric_space (* class metric_space supersort: {open_dist,first_countable_topology,t2_space} parameters: instances: complex :: metric_space real :: metric_space *) subsection{*N,Z,Q,R,C: minus*} term "x::'a::minus" print_locale minus print_dependencies minus (* class minus supersort: type parameters: minus :: ('a \ ('a \ 'a)) instances: Predicate.pred :: (type) minus bool :: minus complex :: minus fset :: (type) minus fun :: (type, minus) minus int :: minus integer :: minus multiset :: (type) minus nat :: minus natural :: minus rat :: minus real :: minus set :: (type) minus *) subsection{*N,Z,Q,R,C: monoid_add*} term "x::'a::monoid_add" print_locale monoid_add print_dependencies monoid_add (* class monoid_add supersort: {semigroup_add,zero} parameters: instances: complex :: monoid_add int :: monoid_add integer :: monoid_add multiset :: (type) monoid_add nat :: monoid_add natural :: monoid_add rat :: monoid_add real :: monoid_add *) subsection{*N,Z,Q,R,C: monoid_mult*} term "x::'a::monoid_mult" print_locale monoid_mult print_dependencies monoid_mult (* class monoid_mult supersort: {semigroup_mult,power} parameters: instances: complex :: monoid_mult int :: monoid_mult integer :: monoid_mult nat :: monoid_mult natural :: monoid_mult rat :: monoid_mult real :: monoid_mult *) subsection{*N,Z,Q,R,C: mult_zero*} term "x::'a::mult_zero" print_locale mult_zero print_dependencies mult_zero (* class mult_zero supersort: {times,zero} parameters: instances: complex :: mult_zero int :: mult_zero integer :: mult_zero nat :: mult_zero natural :: mult_zero rat :: mult_zero real :: mult_zero *) subsection{*N,Z,Q,R,C: narrowing*} term "x::'a::narrowing" print_locale narrowing print_dependencies narrowing (* class narrowing supersort: type parameters: narrowing :: (integer \ 'a ??.Quickcheck_Narrowing.narrowing_cons) instances: ??.Quickcheck_Narrowing.narrowing_type :: narrowing Enum.finite_1 :: narrowing Enum.finite_2 :: narrowing Enum.finite_3 :: narrowing Enum.finite_4 :: narrowing Enum.finite_5 :: narrowing Nitpick.pair_box :: ({narrowing,typerep}, {narrowing,typerep}) narrowing Nitpick.word :: ({narrowing,typerep}) narrowing Quickcheck_Exhaustive.three_valued :: ({narrowing,typerep}) narrowing Quickcheck_Exhaustive.unknown :: ({narrowing,typerep}) narrowing Quickcheck_Narrowing.cfun :: ({narrowing,typerep}) narrowing Quickcheck_Narrowing.ffun :: ({narrowing,typerep}, {narrowing,typerep}) narrowing SMT.pattern :: narrowing bool :: narrowing char :: narrowing complex :: narrowing int :: narrowing integer :: narrowing lazy_sequence :: ({narrowing,typerep}) narrowing list :: ({narrowing,typerep}) narrowing nat :: narrowing natural :: narrowing nibble :: narrowing num :: narrowing option :: ({narrowing,typerep}) narrowing prod :: ({narrowing,typerep}, {narrowing,typerep}) narrowing rat :: narrowing real :: narrowing set :: (narrowing) narrowing sum :: ({narrowing,typerep}, {narrowing,typerep}) narrowing sumbool :: narrowing term :: narrowing unit :: narrowing *) subsection{*_,Z,Q,R,C: neg_numeral*} term "x::'a::neg_numeral" print_locale neg_numeral print_dependencies neg_numeral (* class neg_numeral supersort: {group_add,numeral} parameters: instances: complex :: neg_numeral int :: neg_numeral integer :: neg_numeral rat :: neg_numeral real :: neg_numeral *) subsection{*_,Z,Q,R,_: no_bot*} term "x::'a::no_bot" print_locale no_bot print_dependencies no_bot (* class no_bot supersort: order parameters: instances: int :: no_bot rat :: no_bot real :: no_bot *) subsection{*N,Z,Q,R,_: no_top*} term "x::'a::no_top" print_locale no_top print_dependencies no_top (* class no_top supersort: order parameters: instances: int :: no_top nat :: no_top rat :: no_top real :: no_top *) subsection{*N,Z,Q,R,C: no_zero_divisors*} term "x::'a::no_zero_divisors" print_locale no_zero_divisors print_dependencies no_zero_divisors (* class no_zero_divisors supersort: {times,zero} parameters: instances: complex :: no_zero_divisors int :: no_zero_divisors integer :: no_zero_divisors nat :: no_zero_divisors natural :: no_zero_divisors rat :: no_zero_divisors real :: no_zero_divisors *) subsection{*_,_,_,R,C: norm*} term "x::'a::norm" print_locale norm print_dependencies norm (* class norm supersort: type parameters: norm :: ('a \ real) instances: complex :: norm real :: norm *) subsection{*N,Z,Q,R,C: numeral*} term "x::'a::numeral" print_locale numeral print_dependencies numeral (* class numeral supersort: {one,semigroup_add} parameters: instances: complex :: numeral int :: numeral integer :: numeral nat :: numeral natural :: numeral rat :: numeral real :: numeral *) subsection{*N,Z,Q,R,C: one*} term "x::'a::one" print_locale one print_dependencies one (* class one supersort: type parameters: one_class.one :: 'a instances: complex :: one int :: one integer :: one nat :: one natural :: one rat :: one real :: one *) subsection{*_,_,_,R,C: open*} term "x::'a::open" print_locale Topological_Spaces.open print_dependencies Topological_Spaces.open (* class open supersort: type parameters: open :: ('a set \ bool) instances: complex :: open real :: open *) subsection{*_,_,_,R,C: open_dist*} term "x::'a::open_dist" print_locale open_dist print_dependencies open_dist (* class open_dist supersort: {dist,open} parameters: instances: complex :: open_dist real :: open_dist *) subsection{*N,Z,Q,R,_: ord*} term "x::'a::ord" print_locale ord print_dependencies ord (* class ord supersort: type parameters: less_eq :: ('a \ ('a \ bool)) less :: ('a \ ('a \ bool)) instances: Enum.finite_1 :: ord Enum.finite_2 :: ord Enum.finite_3 :: ord Predicate.pred :: (type) ord bool :: ord filter :: (type) ord fset :: (type) ord fun :: (type, ord) ord int :: ord integer :: ord multiset :: (type) ord nat :: ord natural :: ord num :: ord rat :: ord real :: ord set :: (type) ord *) subsection{*N,Z,Q,R,_: order*} term "x::'a::order" print_locale order print_dependencies order (* class order supersort: preorder parameters: instances: Enum.finite_1 :: order Enum.finite_2 :: order Enum.finite_3 :: order Predicate.pred :: (type) order bool :: order filter :: (type) order fset :: (type) order fun :: (type, order) order int :: order integer :: order multiset :: (type) order nat :: order natural :: order num :: order rat :: order real :: order set :: (type) order *) subsection{*N,_,_,_,_: order_bot*} term "x::'a::order_bot" print_locale order_bot print_dependencies order_bot (* class order_bot supersort: {bot,order} parameters: instances: Predicate.pred :: (type) order_bot bool :: order_bot filter :: (type) order_bot fset :: (type) order_bot fun :: (type, order_bot) order_bot nat :: order_bot set :: (type) order_bot *) subsection{*_,_,_,_,_: order_top*} term "x::'a::order_top" print_locale order_top print_dependencies order_top (* class order_top supersort: {order,top} parameters: instances: Predicate.pred :: (type) order_top bool :: order_top filter :: (type) order_top fset :: (finite) order_top fun :: (type, order_top) order_top set :: (type) order_top *) subsection{*_,_,_,R,_: order_topology*} term "x::'a::order_topology" print_locale order_topology print_dependencies order_topology (* class order_topology supersort: {order,topological_space} parameters: instances: real :: order_topology *) subsection{*_,Z,Q,R,_: ordered_ab_group_add*} term "x::'a::ordered_ab_group_add" print_locale ordered_ab_group_add print_dependencies ordered_ab_group_add (* class ordered_ab_group_add supersort: {ab_group_add,ordered_ab_semigroup_add_imp_le,ordered_comm_monoid_add} parameters: instances: int :: ordered_ab_group_add integer :: ordered_ab_group_add rat :: ordered_ab_group_add real :: ordered_ab_group_add *) subsection{*_,Z,Q,R,_: ordered_ab_group_add_abs*} term "x::'a::ordered_ab_group_add_abs" print_locale ordered_ab_group_add_abs print_dependencies ordered_ab_group_add_abs (* class ordered_ab_group_add_abs supersort: {abs,ordered_ab_group_add} parameters: instances: int :: ordered_ab_group_add_abs integer :: ordered_ab_group_add_abs rat :: ordered_ab_group_add_abs real :: ordered_ab_group_add_abs *) subsection{*N,Z,Q,R,_: ordered_ab_semigroup_add*} term "x::'a::ordered_ab_semigroup_add" print_locale ordered_ab_semigroup_add print_dependencies ordered_ab_semigroup_add (* class ordered_ab_semigroup_add supersort: {ab_semigroup_add,order} parameters: instances: int :: ordered_ab_semigroup_add integer :: ordered_ab_semigroup_add multiset :: (type) ordered_ab_semigroup_add nat :: ordered_ab_semigroup_add natural :: ordered_ab_semigroup_add rat :: ordered_ab_semigroup_add real :: ordered_ab_semigroup_add *) subsection{*N,Z,Q,R,_: ordered_ab_semigroup_add_imp_le*} term "x::'a::ordered_ab_semigroup_add_imp_le" print_locale ordered_ab_semigroup_add_imp_le print_dependencies ordered_ab_semigroup_add_imp_le (* class ordered_ab_semigroup_add_imp_le supersort: ordered_cancel_ab_semigroup_add parameters: instances: int :: ordered_ab_semigroup_add_imp_le integer :: ordered_ab_semigroup_add_imp_le multiset :: (type) ordered_ab_semigroup_add_imp_le nat :: ordered_ab_semigroup_add_imp_le natural :: ordered_ab_semigroup_add_imp_le rat :: ordered_ab_semigroup_add_imp_le real :: ordered_ab_semigroup_add_imp_le *) subsection{*N,Z,Q,R,_: ordered_cancel_ab_semigroup_add*} term "x::'a::ordered_cancel_ab_semigroup_add" print_locale ordered_cancel_ab_semigroup_add print_dependencies ordered_cancel_ab_semigroup_add (* class ordered_cancel_ab_semigroup_add supersort: {cancel_ab_semigroup_add,ordered_ab_semigroup_add} parameters: instances: int :: ordered_cancel_ab_semigroup_add integer :: ordered_cancel_ab_semigroup_add multiset :: (type) ordered_cancel_ab_semigroup_add nat :: ordered_cancel_ab_semigroup_add natural :: ordered_cancel_ab_semigroup_add rat :: ordered_cancel_ab_semigroup_add real :: ordered_cancel_ab_semigroup_add *) subsection{*N,_,_,_,_: ordered_cancel_comm_monoid_diff*} term "x::'a::ordered_cancel_comm_monoid_diff" print_locale ordered_cancel_comm_monoid_diff print_dependencies ordered_cancel_comm_monoid_diff (* class ordered_cancel_comm_monoid_diff supersort: {comm_monoid_diff,ordered_ab_semigroup_add_imp_le} parameters: instances: multiset :: (type) ordered_cancel_comm_monoid_diff nat :: ordered_cancel_comm_monoid_diff *) subsection{*N,Z,Q,R,_: ordered_cancel_comm_semiring*} term "x::'a::ordered_cancel_comm_semiring" print_locale ordered_cancel_comm_semiring print_dependencies ordered_cancel_comm_semiring (* class ordered_cancel_comm_semiring supersort: {comm_semiring_0_cancel,ordered_cancel_semiring,ordered_comm_semiring} parameters: instances: int :: ordered_cancel_comm_semiring integer :: ordered_cancel_comm_semiring nat :: ordered_cancel_comm_semiring rat :: ordered_cancel_comm_semiring real :: ordered_cancel_comm_semiring *) subsection{*N,Z,Q,R,_: ordered_cancel_semiring*} term "x::'a::ordered_cancel_semiring" print_locale ordered_cancel_semiring print_dependencies ordered_cancel_semiring (* class ordered_cancel_semiring supersort: {ordered_semiring,semiring_0_cancel} parameters: instances: int :: ordered_cancel_semiring integer :: ordered_cancel_semiring nat :: ordered_cancel_semiring natural :: ordered_cancel_semiring rat :: ordered_cancel_semiring real :: ordered_cancel_semiring *) subsection{*N,Z,Q,R,_: ordered_comm_monoid_add*} term "x::'a::ordered_comm_monoid_add" print_locale ordered_comm_monoid_add print_dependencies ordered_comm_monoid_add (* class ordered_comm_monoid_add supersort: {comm_monoid_add,ordered_cancel_ab_semigroup_add} parameters: instances: int :: ordered_comm_monoid_add integer :: ordered_comm_monoid_add nat :: ordered_comm_monoid_add natural :: ordered_comm_monoid_add rat :: ordered_comm_monoid_add real :: ordered_comm_monoid_add *) subsection{*_,Z,Q,R,_: ordered_comm_ring*} term "x::'a::ordered_comm_ring" print_locale ordered_comm_ring print_dependencies ordered_comm_ring (* class ordered_comm_ring supersort: {comm_ring,ordered_cancel_comm_semiring,ordered_ring} parameters: instances: int :: ordered_comm_ring integer :: ordered_comm_ring rat :: ordered_comm_ring real :: ordered_comm_ring *) subsection{*N,Z,Q,R,_: ordered_comm_semiring*} term "x::'a::ordered_comm_semiring" print_locale ordered_comm_semiring print_dependencies ordered_comm_semiring (* class ordered_comm_semiring supersort: {comm_semiring_0,ordered_semiring} parameters: instances: int :: ordered_comm_semiring integer :: ordered_comm_semiring nat :: ordered_comm_semiring rat :: ordered_comm_semiring real :: ordered_comm_semiring *) subsection{*_,Z,Q,R,_: ordered_ring*} term "x::'a::ordered_ring" print_locale ordered_ring print_dependencies ordered_ring (* class ordered_ring supersort: {ordered_ab_group_add,ordered_cancel_semiring,ring} parameters: instances: int :: ordered_ring integer :: ordered_ring rat :: ordered_ring real :: ordered_ring *) subsection{*_,Z,Q,R,_: ordered_ring_abs*} term "x::'a::ordered_ring_abs" print_locale ordered_ring_abs print_dependencies ordered_ring_abs (* class ordered_ring_abs supersort: {ordered_ab_group_add_abs,ordered_ring} parameters: instances: int :: ordered_ring_abs integer :: ordered_ring_abs rat :: ordered_ring_abs real :: ordered_ring_abs *) subsection{*N,Z,Q,R,_: ordered_semiring*} term "x::'a::ordered_semiring" print_locale ordered_semiring print_dependencies ordered_semiring (* class ordered_semiring supersort: {comm_monoid_add,ordered_ab_semigroup_add,semiring} parameters: instances: int :: ordered_semiring integer :: ordered_semiring nat :: ordered_semiring natural :: ordered_semiring rat :: ordered_semiring real :: ordered_semiring *) subsection{*N,Z,Q,R,C: partial_ term_of*} term "x::'a::partial_term_of" print_locale partial_term_of print_dependencies partial_term_of (* class partial_ term_of supersort: typerep parameters: partial_ term_of :: ('a itself \ (??.Quickcheck_Narrowing.narrowing_ term \ term)) instances: ??.Quickcheck_Narrowing.narrowing_cons :: (typerep) partial_ term_of ??.Quickcheck_Narrowing.narrowing_ term :: partial_ term_of ??.Quickcheck_Narrowing.narrowing_type :: partial_ term_of ??.Quickcheck_Narrowing.property :: partial_ term_of Enum.finite_1 :: partial_ term_of Enum.finite_2 :: partial_ term_of Enum.finite_3 :: partial_ term_of Enum.finite_4 :: partial_ term_of Enum.finite_5 :: partial_ term_of Nitpick.fun_box :: (typerep, typerep) partial_ term_of Nitpick.pair_box :: (typerep, typerep) partial_ term_of Nitpick.word :: (typerep) partial_ term_of Predicate.pred :: (typerep) partial_ term_of Predicate.seq :: (typerep) partial_ term_of Quickcheck_Exhaustive.three_valued :: (typerep) partial_ term_of Quickcheck_Exhaustive.unknown :: (typerep) partial_ term_of Quickcheck_Narrowing.cfun :: (typerep) partial_ term_of Quickcheck_Narrowing.ffun :: (typerep, typerep) partial_ term_of SMT.pattern :: partial_ term_of bool :: partial_ term_of char :: partial_ term_of complex :: partial_ term_of int :: partial_ term_of integer :: partial_ term_of itself :: (typerep) partial_ term_of lazy_sequence :: (typerep) partial_ term_of list :: (typerep) partial_ term_of multiset :: (typerep) partial_ term_of nat :: partial_ term_of natural :: partial_ term_of nibble :: partial_ term_of num :: partial_ term_of option :: (typerep) partial_ term_of prod :: (typerep, typerep) partial_ term_of rat :: partial_ term_of real :: partial_ term_of set :: (typerep) partial_ term_of sum :: (typerep, typerep) partial_ term_of sumbool :: partial_ term_of term :: partial_ term_of tuple_isomorphism :: (typerep, typerep, typerep) partial_ term_of typerep :: partial_ term_of unit :: partial_ term_of *) subsection{*_,_,_,R,C: perfect_space*} term "x::'a::perfect_space" print_locale perfect_space print_dependencies perfect_space (* class perfect_space supersort: topological_space parameters: instances: complex :: perfect_space real :: perfect_space *) subsection{*N,Z,Q,R,C: plus*} term "x::'a::plus" print_locale plus print_dependencies plus (* class plus supersort: type parameters: plus :: ('a \ ('a \ 'a)) instances: complex :: plus int :: plus integer :: plus multiset :: (type) plus nat :: plus natural :: plus num :: plus rat :: plus real :: plus *) subsection{*N,Z,Q,R,C: power*} term "x::'a::power" print_locale power print_dependencies power (* class power supersort: {one,times} parameters: instances: complex :: power int :: power integer :: power nat :: power natural :: power rat :: power real :: power *) subsection{*N,Z,Q,R,_: preorder*} term "x::'a::preorder" print_locale preorder print_dependencies preorder (* class preorder supersort: ord parameters: instances: Enum.finite_1 :: preorder Enum.finite_2 :: preorder Enum.finite_3 :: preorder Predicate.pred :: (type) preorder bool :: preorder filter :: (type) preorder fset :: (type) preorder fun :: (type, preorder) preorder int :: preorder integer :: preorder multiset :: (type) preorder nat :: preorder natural :: preorder num :: preorder rat :: preorder real :: preorder set :: (type) preorder *) subsection{*N,Z,Q,R,C: random*} term "x::'a::random" print_locale random print_dependencies random (* class random supersort: typerep parameters: random_class.random :: (natural \ ((natural \ natural) \ (('a \ (unit \ term)) \ (natural \ natural)))) instances: ??.Quickcheck_Narrowing.narrowing_cons :: (random) random ??.Quickcheck_Narrowing.narrowing_ term :: random ??.Quickcheck_Narrowing.narrowing_type :: random ??.Quickcheck_Narrowing.property :: random Enum.finite_1 :: random Enum.finite_2 :: random Enum.finite_3 :: random Enum.finite_4 :: random Enum.finite_5 :: random Nitpick.fun_box :: ({ term_of,equal}, random) random Nitpick.pair_box :: (random, random) random Nitpick.word :: (random) random Predicate.pred :: ({ term_of,equal}) random Predicate.seq :: ({ term_of,equal,random}) random Quickcheck_Exhaustive.three_valued :: (random) random Quickcheck_Exhaustive.unknown :: (random) random Quickcheck_Narrowing.cfun :: (random) random Quickcheck_Narrowing.ffun :: (random, random) random SMT.pattern :: random String.literal :: random bool :: random char :: random complex :: random fun :: ({ term_of,equal}, random) random int :: random integer :: random itself :: (typerep) random lazy_sequence :: (random) random list :: (random) random multiset :: (random) random nat :: random natural :: random nibble :: random num :: random option :: (random) random prod :: (random, random) random rat :: random real :: random set :: (random) random sum :: (random, random) random sumbool :: random term :: random tuple_isomorphism :: ({ term_of,equal,random}, random, random) random typerep :: random unit :: random *) subsection{*_,_,_,R,C: real_algebra*} term "x::'a::real_algebra" print_locale real_algebra print_dependencies real_algebra (* class real_algebra supersort: {real_vector,ring} parameters: instances: complex :: real_algebra real :: real_algebra *) subsection{*_,_,_,R,C: real_algebra_1*} term "x::'a::real_algebra_1" print_locale real_algebra_1 print_dependencies real_algebra_1 (* class real_algebra_1 supersort: {ring_char_0,real_algebra} parameters: instances: complex :: real_algebra_1 real :: real_algebra_1 *) subsection{*_,_,_,R,C: real_div_algebra*} term "x::'a::real_div_algebra" print_locale real_div_algebra print_dependencies real_div_algebra (* class real_div_algebra supersort: {division_ring,real_algebra_1} parameters: instances: complex :: real_div_algebra real :: real_div_algebra *) subsection{*_,_,_,R,C: real_field*} term "x::'a::real_field" print_locale real_field print_dependencies real_field (* class real_field supersort: {field_char_0,real_div_algebra} parameters: instances: complex :: real_field real :: real_field *) subsection{*_,_,_,R,C: real_normed_algebra*} term "x::'a::real_normed_algebra" print_locale real_normed_algebra print_dependencies real_normed_algebra (* class real_normed_algebra supersort: {real_algebra,real_normed_vector} parameters: instances: complex :: real_normed_algebra real :: real_normed_algebra *) subsection{*_,_,_,R,C: real_normed_algebra_1*} term "x::'a::real_normed_algebra_1" print_locale real_normed_algebra_1 print_dependencies real_normed_algebra_1 (* class real_normed_algebra_1 supersort: {real_algebra_1,real_normed_algebra,perfect_space} parameters: instances: complex :: real_normed_algebra_1 real :: real_normed_algebra_1 *) subsection{*_,_,_,R,C: real_normed_div_algebra*} term "x::'a::real_normed_div_algebra" print_locale real_normed_div_algebra print_dependencies real_normed_div_algebra (* class real_normed_div_algebra supersort: {real_div_algebra,real_normed_algebra_1} parameters: instances: complex :: real_normed_div_algebra real :: real_normed_div_algebra *) subsection{*_,_,_,R,C: real_normed_field*} term "x::'a::real_normed_field" print_locale real_normed_field print_dependencies real_normed_field (* class real_normed_field supersort: {real_field,real_normed_div_algebra} parameters: instances: complex :: real_normed_field real :: real_normed_field *) subsection{*_,_,_,R,C: real_normed_vector*} term "x::'a::real_normed_vector" print_locale real_normed_vector print_dependencies real_normed_vector (* class real_normed_vector supersort: {dist_norm,metric_space,real_vector,sgn_div_norm} parameters: instances: complex :: real_normed_vector real :: real_normed_vector *) subsection{*_,_,_,R,C: real_vector*} term "x::'a::real_vector" print_locale real_vector print_dependencies real_vector (* class real_vector supersort: {ab_group_add,scaleR} parameters: instances: complex :: real_vector real :: real_vector *) subsection{*_,Z,Q,R,C: ring*} term "x::'a::ring" print_locale ring print_dependencies ring (* class ring supersort: {ab_group_add,semiring_0_cancel} parameters: instances: complex :: ring int :: ring integer :: ring rat :: ring real :: ring *) subsection{*_,Z,Q,R,C: ring_1*} term "x::'a::ring_1" print_locale ring_1 print_dependencies ring_1 (* class ring_1 supersort: {neg_numeral,ring,semiring_1_cancel} parameters: instances: complex :: ring_1 int :: ring_1 integer :: ring_1 rat :: ring_1 real :: ring_1 *) subsection{*_,Z,Q,R,C: ring_1_no_zero_divisors*} term "x::'a::ring_1_no_zero_divisors" print_locale ring_1_no_zero_divisors print_dependencies ring_1_no_zero_divisors (* class ring_1_no_zero_divisors supersort: {ring_1,ring_no_zero_divisors} parameters: instances: complex :: ring_1_no_zero_divisors int :: ring_1_no_zero_divisors integer :: ring_1_no_zero_divisors rat :: ring_1_no_zero_divisors real :: ring_1_no_zero_divisors *) subsection{*_,Z,Q,R,C: ring_char_0*} term "x::'a::ring_char_0" print_locale ring_char_0 print_dependencies ring_char_0 (* class ring_char_0 supersort: {semiring_char_0,ring_1} parameters: instances: complex :: ring_char_0 int :: ring_char_0 integer :: ring_char_0 rat :: ring_char_0 real :: ring_char_0 *) subsection{*_,Z,_,_,_: ring_div*} term "x::'a::ring_div" print_locale ring_div print_dependencies ring_div (* class ring_div supersort: {semiring_div,comm_ring_1,ring_1_no_zero_divisors} parameters: instances: int :: ring_div integer :: ring_div *) subsection{*_,Z,Q,R,C: ring_no_zero_divisors*} term "x::'a::ring_no_zero_divisors" print_locale ring_no_zero_divisors print_dependencies ring_no_zero_divisors (* class ring_no_zero_divisors supersort: {no_zero_divisors,ring} parameters: instances: complex :: ring_no_zero_divisors int :: ring_no_zero_divisors integer :: ring_no_zero_divisors rat :: ring_no_zero_divisors real :: ring_no_zero_divisors *) subsection{*_,_,_,R,C: scaleR*} term "x::'a::scaleR" print_locale scaleR print_dependencies scaleR (* class scaleR supersort: type parameters: scaleR :: (real \ ('a \ 'a)) instances: complex :: scaleR real :: scaleR *) subsection{*N,Z,Q,R,C: semigroup_add*} term "x::'a::semigroup_add" print_locale semigroup_add print_dependencies semigroup_add (* class semigroup_add supersort: plus parameters: instances: complex :: semigroup_add int :: semigroup_add integer :: semigroup_add multiset :: (type) semigroup_add nat :: semigroup_add natural :: semigroup_add rat :: semigroup_add real :: semigroup_add *) subsection{*N,Z,Q,R,C: semigroup_mult*} term "x::'a::semigroup_mult" print_locale semigroup_mult print_dependencies semigroup_mult (* class semigroup_mult supersort: times parameters: instances: complex :: semigroup_mult int :: semigroup_mult integer :: semigroup_mult nat :: semigroup_mult natural :: semigroup_mult rat :: semigroup_mult real :: semigroup_mult *) subsection{*N,Z,Q,R,_: semilattice_inf*} term "x::'a::semilattice_inf" print_locale semilattice_inf print_dependencies semilattice_inf (* class semilattice_inf supersort: {inf,order} parameters: instances: Predicate.pred :: (type) semilattice_inf bool :: semilattice_inf filter :: (type) semilattice_inf fset :: (type) semilattice_inf fun :: (type, semilattice_inf) semilattice_inf int :: semilattice_inf multiset :: (type) semilattice_inf nat :: semilattice_inf rat :: semilattice_inf real :: semilattice_inf set :: (type) semilattice_inf *) subsection{*N,Z,Q,R,_: semilattice_sup*} term "x::'a::semilattice_sup" print_locale semilattice_sup print_dependencies semilattice_sup (* class semilattice_sup supersort: {sup,order} parameters: instances: Predicate.pred :: (type) semilattice_sup bool :: semilattice_sup filter :: (type) semilattice_sup fset :: (type) semilattice_sup fun :: (type, semilattice_sup) semilattice_sup int :: semilattice_sup multiset :: (type) semilattice_sup nat :: semilattice_sup rat :: semilattice_sup real :: semilattice_sup set :: (type) semilattice_sup *) subsection{*N,Z,Q,R,C: semiring*} term "x::'a::semiring" print_locale semiring print_dependencies semiring (* class semiring supersort: {ab_semigroup_add,semigroup_mult} parameters: instances: complex :: semiring int :: semiring integer :: semiring nat :: semiring natural :: semiring rat :: semiring real :: semiring *) subsection{*N,Z,Q,R,C: semiring_0*} term "x::'a::semiring_0" print_locale semiring_0 print_dependencies semiring_0 (* class semiring_0 supersort: {comm_monoid_add,mult_zero,semiring} parameters: instances: complex :: semiring_0 int :: semiring_0 integer :: semiring_0 nat :: semiring_0 natural :: semiring_0 rat :: semiring_0 real :: semiring_0 *) subsection{*N,Z,Q,R,C: semiring_0_cancel*} term "x::'a::semiring_0_cancel" print_locale semiring_0_cancel print_dependencies semiring_0_cancel (* class semiring_0_cancel supersort: {cancel_comm_monoid_add,semiring_0} parameters: instances: complex :: semiring_0_cancel int :: semiring_0_cancel integer :: semiring_0_cancel nat :: semiring_0_cancel natural :: semiring_0_cancel rat :: semiring_0_cancel real :: semiring_0_cancel *) subsection{*N,Z,Q,R,C: semiring_1*} term "x::'a::semiring_1" print_locale semiring_1 print_dependencies semiring_1 (* class semiring_1 supersort: {semiring_numeral,semiring_0,zero_neq_one} parameters: instances: complex :: semiring_1 int :: semiring_1 integer :: semiring_1 nat :: semiring_1 natural :: semiring_1 rat :: semiring_1 real :: semiring_1 *) subsection{*N,Z,Q,R,C: semiring_1_cancel*} term "x::'a::semiring_1_cancel" print_locale semiring_1_cancel print_dependencies semiring_1_cancel (* class semiring_1_cancel supersort: {semiring_0_cancel,semiring_1} parameters: instances: complex :: semiring_1_cancel int :: semiring_1_cancel integer :: semiring_1_cancel nat :: semiring_1_cancel natural :: semiring_1_cancel rat :: semiring_1_cancel real :: semiring_1_cancel *) subsection{*N,Z,Q,R,C: semiring_char_0*} term "x::'a::semiring_char_0" print_locale semiring_char_0 print_dependencies semiring_char_0 (* class semiring_char_0 supersort: semiring_1 parameters: instances: complex :: semiring_char_0 int :: semiring_char_0 integer :: semiring_char_0 nat :: semiring_char_0 rat :: semiring_char_0 real :: semiring_char_0 *) subsection{*N,Z,_,_,_: semiring_div*} term "x::'a::semiring_div" print_locale semiring_div print_dependencies semiring_div (* class semiring_div supersort: {div,comm_semiring_1_cancel,no_zero_divisors} parameters: instances: int :: semiring_div integer :: semiring_div nat :: semiring_div natural :: semiring_div *) subsection{*N,Z,Q,R,C: semiring_numeral*} term "x::'a::semiring_numeral" print_locale semiring_numeral print_dependencies semiring_numeral (* class semiring_numeral supersort: {monoid_mult,numeral,semiring} parameters: instances: complex :: semiring_numeral int :: semiring_numeral integer :: semiring_numeral nat :: semiring_numeral natural :: semiring_numeral rat :: semiring_numeral real :: semiring_numeral *) subsection{*N,Z,_,_,_: semiring_numeral_div*} term "x::'a::semiring_numeral_div" print_locale semiring_numeral_div print_dependencies semiring_numeral_div (* class semiring_numeral_div supersort: {semiring_div,minus,linordered_semidom} parameters: instances: int :: semiring_numeral_div integer :: semiring_numeral_div nat :: semiring_numeral_div *) subsection{*_,Z,Q,R,C: sgn*} term "x::'a::sgn" print_locale sgn print_dependencies sgn (* class sgn supersort: type parameters: sgn :: ('a \ 'a) instances: complex :: sgn int :: sgn integer :: sgn rat :: sgn real :: sgn *) subsection{*_,_,_,R,C: sgn_div_norm*} term "x::'a::sgn_div_norm" print_locale sgn_div_norm print_dependencies sgn_div_norm (* class sgn_div_norm supersort: {sgn,norm,scaleR} parameters: instances: complex :: sgn_div_norm real :: sgn_div_norm *) subsection{*_,Z,Q,R,_: sgn_if*} term "x::'a::sgn_if" print_locale sgn_if print_dependencies sgn_if (* class sgn_if supersort: {minus,one,sgn,uminus,zero,ord} parameters: instances: int :: sgn_if integer :: sgn_if rat :: sgn_if real :: sgn_if *) subsection{*N,_,_,_,C: size*} term "x::'a::size" print_locale size print_dependencies size (* class size supersort: type parameters: size :: ('a \ nat) instances: ??.Quickcheck_Narrowing.narrowing_cons :: (type) size ??.Quickcheck_Narrowing.narrowing_ term :: size ??.Quickcheck_Narrowing.narrowing_type :: size Enum.finite_1 :: size Enum.finite_2 :: size Enum.finite_3 :: size Enum.finite_4 :: size Enum.finite_5 :: size Nitpick.fun_box :: (type, type) size Nitpick.pair_box :: (type, type) size Nitpick.word :: (type) size Predicate.pred :: (type) size Predicate.seq :: (type) size Quickcheck_Exhaustive.three_valued :: (type) size Quickcheck_Exhaustive.unknown :: (type) size Quickcheck_Narrowing.cfun :: (type) size Quickcheck_Narrowing.ffun :: (type, type) size SMT.pattern :: size String.literal :: size bool :: size char :: size complex :: size lazy_sequence :: (type) size list :: (type) size multiset :: (type) size nat :: size natural :: size nibble :: size num :: size option :: (type) size prod :: (type, type) size sum :: (type, type) size sumbool :: size term :: size tuple_isomorphism :: (type, type, type) size typerep :: size unit :: size *) subsection{*_,Z,_,_,_: small_lazy*} term "x::'a::small_lazy" print_locale small_lazy print_dependencies small_lazy (* class small_lazy supersort: type parameters: small_lazy :: (natural \ 'a lazy_sequence) instances: int :: small_lazy list :: (small_lazy) small_lazy prod :: (small_lazy, small_lazy) small_lazy unit :: small_lazy *) subsection{*N,Z,Q,R,_: sup*} term "x::'a::sup" print_locale sup print_dependencies sup (* class sup supersort: type parameters: sup :: ('a \ ('a \ 'a)) instances: Predicate.pred :: (type) sup bool :: sup filter :: (type) sup fset :: (type) sup fun :: (type, semilattice_sup) sup int :: sup multiset :: (type) sup nat :: sup rat :: sup real :: sup set :: (type) sup *) subsection{*_,_,_,R,C: t0_space*} term "x::'a::t0_space" print_locale t0_space print_dependencies t0_space (* class t0_space supersort: topological_space parameters: instances: complex :: t0_space real :: t0_space *) subsection{*_,_,_,R,C: t1_space*} term "x::'a::t1_space" print_locale t1_space print_dependencies t1_space (* class t1_space supersort: t0_space parameters: instances: complex :: t1_space real :: t1_space *) subsection{*_,_,_,R,C: t2_space*} term "x::'a::t2_space" print_locale t2_space print_dependencies t2_space (* class t2_space supersort: t1_space parameters: instances: complex :: t2_space real :: t2_space *) subsection{*N,Z,Q,R,C: term_of*} term "x::'a:: term_of" print_locale term_of print_dependencies term_of (* class term_of supersort: typerep parameters: term_of_class. term_of :: ('a \ term) instances: ??.Quickcheck_Narrowing.narrowing_cons :: (typerep) term_of ??.Quickcheck_Narrowing.narrowing_ term :: term_of ??.Quickcheck_Narrowing.narrowing_type :: term_of ??.Quickcheck_Narrowing.property :: term_of Enum.finite_1 :: term_of Enum.finite_2 :: term_of Enum.finite_3 :: term_of Enum.finite_4 :: term_of Enum.finite_5 :: term_of Nitpick.fun_box :: (typerep, typerep) term_of Nitpick.pair_box :: (typerep, typerep) term_of Nitpick.word :: (typerep) term_of Predicate.pred :: (typerep) term_of Predicate.seq :: (typerep) term_of Quickcheck_Exhaustive.three_valued :: (typerep) term_of Quickcheck_Exhaustive.unknown :: (typerep) term_of Quickcheck_Narrowing.cfun :: (typerep) term_of Quickcheck_Narrowing.ffun :: (typerep, typerep) term_of SMT.pattern :: term_of String.literal :: term_of bool :: term_of char :: term_of complex :: term_of cset :: (typerep) term_of fset :: (typerep) term_of fun :: (typerep, typerep) term_of int :: term_of integer :: term_of itself :: (typerep) term_of lazy_sequence :: (typerep) term_of list :: (typerep) term_of multiset :: (typerep) term_of nat :: term_of natural :: term_of nibble :: term_of num :: term_of option :: (typerep) term_of prod :: (typerep, typerep) term_of rat :: term_of real :: term_of set :: (typerep) term_of sum :: (typerep, typerep) term_of sumbool :: term_of term :: term_of tuple_isomorphism :: (typerep, typerep, typerep) term_of typerep :: term_of unit :: term_of *) subsection{*N,Z,Q,R,C: times*} term "x::'a::times" print_locale times print_dependencies times (* class times supersort: type parameters: times :: ('a \ ('a \ 'a)) instances: complex :: times int :: times integer :: times nat :: times natural :: times num :: times rat :: times real :: times *) subsection{*_,_,_,_,_: top*} term "x::'a::top" print_locale top print_dependencies top (* class top supersort: type parameters: top :: 'a instances: Predicate.pred :: (type) top bool :: top filter :: (type) top fset :: (finite) top fun :: (type, top) top set :: (type) top *) subsection{*_,_,_,R,C: topological_space*} term "x::'a::topological_space" print_locale topological_space print_dependencies topological_space (* class topological_space supersort: open parameters: instances: complex :: topological_space real :: topological_space *) subsection{*N,Z,Q,R,C: type*} term "x::'a::type" (* print_dependencies type*) (* class type supersort: {} instances: ??.Quickcheck_Narrowing.narrowing_cons :: (type) type ??.Quickcheck_Narrowing.narrowing_ term :: type ??.Quickcheck_Narrowing.narrowing_type :: type ??.Quickcheck_Narrowing.property :: type Datatype.node :: (type, type) type Enum.finite_1 :: type Enum.finite_2 :: type Enum.finite_3 :: type Enum.finite_4 :: type Enum.finite_5 :: type Nitpick.bisim_iterator :: type Nitpick.fun_box :: (type, type) type Nitpick.pair_box :: (type, type) type Nitpick.signed_bit :: type Nitpick.unsigned_bit :: type Nitpick.word :: (type) type Predicate.pred :: (type) type Predicate.seq :: (type) type Quickcheck_Exhaustive.three_valued :: (type) type Quickcheck_Exhaustive.unknown :: (type) type Quickcheck_Narrowing.cfun :: (type) type Quickcheck_Narrowing.ffun :: (type, type) type SMT.pattern :: type String.literal :: type bool :: type char :: type complex :: type cset :: (type) type filter :: (type) type fset :: (type) type fun :: (type, type) type ind :: type int :: type integer :: type itself :: (type) type lazy_sequence :: (type) type list :: (type) type multiset :: (type) type nat :: type natural :: type nibble :: type num :: type option :: (type) type prod :: (type, type) type rD :: type rD.rD_IITN :: type rD_pre_rD_bdT :: type rat :: type real :: type set :: (type) type sum :: (type, type) type sumbool :: type term :: type tuple_isomorphism :: (type, type, type) type typerep :: type unit :: type *) subsection{*N,Z,Q,R,C: typerep*} term "x::'a::typerep" print_locale typerep print_dependencies typerep (* class typerep supersort: type parameters: typerep_class.typerep :: ('a itself \ typerep) instances: ??.Quickcheck_Narrowing.narrowing_cons :: (typerep) typerep ??.Quickcheck_Narrowing.narrowing_ term :: typerep ??.Quickcheck_Narrowing.narrowing_type :: typerep ??.Quickcheck_Narrowing.property :: typerep Datatype.node :: (typerep, typerep) typerep Enum.finite_1 :: typerep Enum.finite_2 :: typerep Enum.finite_3 :: typerep Enum.finite_4 :: typerep Enum.finite_5 :: typerep Nitpick.fun_box :: (typerep, typerep) typerep Nitpick.pair_box :: (typerep, typerep) typerep Nitpick.word :: (typerep) typerep Predicate.pred :: (typerep) typerep Predicate.seq :: (typerep) typerep Quickcheck_Exhaustive.three_valued :: (typerep) typerep Quickcheck_Exhaustive.unknown :: (typerep) typerep Quickcheck_Narrowing.cfun :: (typerep) typerep Quickcheck_Narrowing.ffun :: (typerep, typerep) typerep SMT.pattern :: typerep String.literal :: typerep bool :: typerep char :: typerep complex :: typerep cset :: (typerep) typerep filter :: (typerep) typerep fset :: (typerep) typerep fun :: (typerep, typerep) typerep int :: typerep integer :: typerep itself :: (typerep) typerep lazy_sequence :: (typerep) typerep list :: (typerep) typerep multiset :: (typerep) typerep nat :: typerep natural :: typerep nibble :: typerep num :: typerep option :: (typerep) typerep prod :: (typerep, typerep) typerep rD :: typerep rD.rD_IITN :: typerep rD_pre_rD_bdT :: typerep rat :: typerep real :: typerep set :: (typerep) typerep sum :: (typerep, typerep) typerep sumbool :: typerep term :: typerep tuple_isomorphism :: (typerep, typerep, typerep) typerep typerep :: typerep unit :: typerep *) subsection{*_,Z,Q,R,C: uminus*} term "x::'a::uminus" print_locale uminus print_dependencies uminus (* class uminus supersort: type parameters: uminus :: ('a \ 'a) instances: Predicate.pred :: (type) uminus bool :: uminus complex :: uminus fset :: (finite) uminus fun :: (type, uminus) uminus int :: uminus integer :: uminus rat :: uminus real :: uminus set :: (type) uminus *) subsection{*_,_,Q,R,_: unbounded_dense_linorder*} term "x::'a::unbounded_dense_linorder" print_locale unbounded_dense_linorder print_dependencies unbounded_dense_linorder (* class unbounded_dense_linorder supersort: {dense_linorder,no_bot,no_top} parameters: instances: rat :: unbounded_dense_linorder real :: unbounded_dense_linorder *) subsection{*N,_,_,_,_: wellorder*} term "x::'a::wellorder" print_locale wellorder print_dependencies wellorder (* class wellorder supersort: linorder parameters: instances: nat :: wellorder *) subsection{*N,Z,Q,R,C: zero*} term "x::'a::zero" print_locale zero print_dependencies zero (* class zero supersort: type parameters: zero_class.zero :: 'a instances: complex :: zero int :: zero integer :: zero multiset :: (type) zero nat :: zero natural :: zero rat :: zero real :: zero *) subsection{*N,Z,Q,R,C: zero_neq_one*} term "x::'a::zero_neq_one" print_locale zero_neq_one print_dependencies zero_neq_one (* class zero_neq_one: supersort: {one,zero} parameters: instances: complex :: zero_neq_one int :: zero_neq_one integer :: zero_neq_one nat :: zero_neq_one natural :: zero_neq_one rat :: zero_neq_one real :: zero_neq_one *) end