theory Loading imports Main begin ML {* quick_and_dirty := true *} consts load_list_basic :: "nat \ nat \ nat list" lemma load_list_basic_app [simp]: "load_list_basic (Suc n) p = p # load_list_basic n (p + 1)" sorry lemma smbaL_load_list_basic2: assumes lens: "length bs = sz" assumes pmap: "P p sz bs" shows "load_list_basic sz p = Z" using lens pmap proof (induct sz arbitrary: bs p) case 0 thus ?case sorry next case (Suc sz) hence IH: "\bs p. \length bs = sz; P p sz bs\ \ load_list_basic sz p = Z" by auto show ?case apply - apply simp apply (subst IH) sorry qed end