theory Barf imports Main begin definition graph :: "'a set \ 'b set \ ('a \ 'b) \ ('a \ 'b) set" where "graph A B f = {(a, b). a \ A \ b \ B \ f a = b}" lemma "graph A B f \ (graph A B f) O (Id_on B)" using graph_def (* try "cvc4": Try this: by auto (37 ms). "z3": Try this: by auto (53 ms). *) by auto (* Failed to finish proof\: goal (1 subgoal): 1. \a b. (\A B f. graph A B f = {(a, b). a \ A \ b \ B \ f a = b}) \ (a, b) \ graph A B f \ (a, b) \ graph A B f O Id_on B *) end