Proof in axiomatic set theory (ZFC): ~Finite(A) = \Rightarrow A \approx (A \cup {A})

Lemma1: ~finite(A) ==> $\exists B (B \subseteq A \land B \approx N)$. Proof: we have $A \neq \{\}$, hence there exists $b_1 \in A$. put $B_1 = \{\}$ and for n>1: $B_n = B_{n-1} \cup \{b_{n-1}\},\$ we have $A-B_n \neq \{\}$: by contradiction $A-B_n = \{\}$, hence $A \subseteq B_n$, hence finite(A). We put $B = \bigcup B_n$ and get $B \approx N$ by definition. qed

Lemma2: Let A be an arbitrary set and B countably infinite $\Rightarrow \exists g \in \text{bij}(B, B \cup \{A\})$. Proof: B has the representation $B = \{b_1, b_2, b_3 \dots \}$ We define function g as follows: $g(b_1) = A$, $g(b_2) = g(b_1)$ $g(b_n) = g(b_{n-1}), n>1.$ qed with the help of lemma1 and lemma2 we prove lemma3: ~Finite(A) ==> A \approx (A ∪ {A}). Proof: Let A be a set with \sim Finite(A). By virtue of lemma1 there is a subset $B \subseteq A$ and $B \approx N$. By virtue of lemma2 there is a mapping $g \in \text{bij}(B, B\cup\{A\})$. Now we define the mapping f: A --> A ∪ ${A}$ as follows: $x \in B$: f(x)=g(x) $x \notin B$: f(x)=x. f maps B to B∪ $\{A\}$ and A-B to A-B bijectively, i.e. $f \in \text{bij}(A, A \cup \{A\})$. qed

Translated to Isabelle:

Theory First imports ZF.OrderType ZF ZF.Finite ZF.Nat ZF.Sum ZF.AC

begin

definition eqpoll (infix "≅" 70) where "A≅B $\equiv \exists f$. f∈bij(A,B)"

definition "FiniteSet(A) $\equiv \exists n \in n$ "

```
lemma ad1: "∀A.∃B.(~finite(A) ==> (B ⊆ A ∧ B ≅ N))" by auto
lemma ad2: "∀A.∀B.∃g.(B \cong N = \cong g \in bij(B, B∪{A}))" by auto
lemma ad3: "\forallA.(~Finite(A) ==> A ≅ (A ∪ {A}))"
  apply (ad1)
  apply (ad2)
  done
```
end

in First.thy following error messages occur in Isabelle:

- Inner lexical error

- Inner syntax error: unexpected end of input