
2 CODE GENERATION FOUNDATIONS 11

else collect_duplicates A_ xs (z :: ys) zs)
else collect_duplicates A_ (z :: xs) (z :: ys) zs);

end; (*struct Example*)

Obviously, polymorphic equality is implemented the Haskell way using a
type class. How is this achieved? HOL introduces an explicit class equal
with a corresponding operation equal-class .equal such that equal-class .equal
= (=). The preprocessing framework does the rest by propagating the equal
constraints through all dependent code equations. For datatypes, instances
of equal are implicitly derived when possible. For other types, you may
instantiate equal manually like any other type class.

2.5 Explicit partiality

Partiality usually enters the game by partial patterns, as in the following
example, again for amortised queues:

definition strict-dequeue :: ′a queue ⇒ ′a × ′a queue where
strict-dequeue q = (case dequeue q

of (Some x , q ′) ⇒ (x , q ′))

lemma strict-dequeue-AQueue [code]:
strict-dequeue (AQueue xs (y # ys)) = (y , AQueue xs ys)
strict-dequeue (AQueue xs []) =

(case rev xs of y # ys ⇒ (y , AQueue [] ys))
by (simp-all add : strict-dequeue-def ) (cases xs, simp-all split : list .split)

In the corresponding code, there is no equation for the pattern AQueue [] []:

strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs []) = (case reverse xs of {

y : ys -> (y, AQueue [] ys);
});

strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);

In some cases it is desirable to state this pseudo-“partiality” more explicitly,
e.g. as follows:

axiomatization empty-queue :: ′a

definition strict-dequeue ′ :: ′a queue ⇒ ′a × ′a queue where



2 CODE GENERATION FOUNDATIONS 12

strict-dequeue ′ q = (case dequeue q of (Some x , q ′) ⇒ (x , q ′)
| - ⇒ empty-queue)

lemma strict-dequeue ′-AQueue [code]:
strict-dequeue ′ (AQueue xs []) = (if xs = [] then empty-queue

else strict-dequeue ′ (AQueue [] (rev xs)))
strict-dequeue ′ (AQueue xs (y # ys)) =

(y , AQueue xs ys)
by (simp-all add : strict-dequeue ′-def split : list .splits)

Observe that on the right hand side of the definition of strict-dequeue ′, the
unspecified constant empty-queue occurs. An attempt to generate code for
strict-dequeue ′ would make the code generator complain that empty-queue
has no associated code equations. In most situations unimplemented con-
stants indeed indicated a broken program; however such constants can also
be thought of as function definitions which always fail, since there is never
a successful pattern match on the left hand side. In order to categorise a
constant into that category explicitly, use the code attribute with abort :

declare [[code abort : empty-queue]]

Then the code generator will just insert an error or exception at the appro-
priate position:

empty_queue :: forall a. a;
empty_queue = error "Foundations.empty_queue";

strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);
strict_dequeue (AQueue xs []) =

(if null xs then empty_queue
else strict_dequeue (AQueue [] (reverse xs)));

This feature however is rarely needed in practice. Note that the HOL default
setup already includes

declare [[code abort : undefined ]]

– hence undefined can always be used in such situations.


