
Isa-Test

By Yannick

August 5, 2012

Contents

1 Test explicit proof and presentation document with Isabelle. 1

2 Definition of fun sep 1

3 Automated proof of a lemma about fun sep 1

4 Explicit manual proof of the same lemma 2
4.1 Reminder of some of the involved rules 2
4.2 Lemma’s proof . 2
4.3 Comments about the style . 3

1 Test explicit proof and presentation document
with Isabelle.

theory Isa-Test
imports Main
begin

2 Definition of fun sep

fun sep :: ′a ⇒ ′a list ⇒ ′a list
where
sep s (x # y # xs) = x # s # (sep s (y # xs))
| sep s xs = xs

value sep s [a,b,c]
value sep s [a] — Unchanged
value sep s [] — Idem

3 Automated proof of a lemma about fun sep

lemma map f (sep s xs) = sep (f s) (map f xs)

1

apply (induct s xs rule: sep.induct)
apply auto
done

Easy, nice for quick modelling, shows how much your computer and Isabelle
are clever, but does not help to be aware of what’s involved.

4 Explicit manual proof of the same lemma

4.1 Reminder of some of the involved rules

sep.simps(1): sep ?s (?x # ?y # ?xs) = ?x # ?s # sep ?s (?y # ?xs)

sep.simps(2): sep ?s [] = []

sep.simps(3): sep ?s [?v] = [?v]

sep.induct(1): [[
∧
s x y xs. ?P s (y # xs) =⇒ ?P s (x # y # xs);

∧
s. ?P s

[];
∧
s v . ?P s [v]]] =⇒ ?P ?a0 .0 ?a1 .0

map.simps(1): map ?f [] = []

map.simps(2): map ?f (?x # ?xs) = ?f ?x # map ?f ?xs

4.2 Lemma’s proof

lemma map f (sep s xs) = sep (f s) (map f xs)
proof (induct s xs rule: sep.induct)
case (1 s x y xs)

— A strategy comes from the observation that the sole difference
— between the hypothesis and the conclusion of that induction
— step, is that the conclusion just have (f x) # (f s)
— prepended to both sides of its equality.

— We will turn A = B =⇒ C = D into
— A = B =⇒ (E A) = (E B), whose proof is easy.

let ?A1 = sep s (y # xs) — Subexpression of A
let ?B1 = map f (y # xs) — Subexpression of B
let ?C1 = sep s (x # y # xs) — Subexpression of C
let ?D1 = map f (x # y # xs) — Subexpression of D
let ?E = λxs. (f x) # (f s) # xs

assume (map f ?A1) = (sep (f s) ?B1) (is ?A = ?B)
show (map f ?C1) = (sep (f s) ?D1) (is ?C = ?D)

proof −
have 1 : ?C = ?E ?A

proof −

2

have ?C1 = x # s # ?A1 by simp
then have map f ?C1 = (f x) # (f s) # (map f ?A1) by simp
then have ?C = (f x) # (f s) # ?A by simp
then show ?C = ?E ?A by simp

qed
have 2 : ?D = ?E ?B

proof −
— For the second step, note that B1 is not empty
have ?D1 = (f x) # ?B1 by simp
then have sep (f s) ?D1 = (f x) # (f s) # (sep (f s) ?B1) by simp
then have ?D = (f x) # (f s) # ?B by simp
then show ?D = ?E ?B by simp

qed
show ?C = ?D using 〈?A = ?B 〉 and 1 and 2 by simp

qed
next
case (2-1 s)

show map f (sep s []) = sep (f s) (map f []) (is ?A = ?B)
proof −

let ?C = []
have 1 : map f (sep s []) = [] (is ?A = ?C) by simp
have 2 : sep (f s) (map f []) = [] (is ?B = ?C) by simp
show ?A = ?B using 1 and 2 by simp

qed
next
case (2-2 s e)

show map f (sep s [e]) = sep (f s) (map f [e]) (is ?A = ?B)
proof −

let ?C = map f [e]
have 1 : map f (sep s [e]) = map f [e] (is ?A = ?C) by simp
have 2 : sep (f s) (map f [e]) = map f [e] (is ?B = ?C) by simp
show ?A = ?B using 1 and 2 by simp

qed
qed

4.3 Comments about the style

May looks too much verbose, but the proof structure allows to easily skeep
over details. Furthermore, you can benefit from that verbosity to figure some
generic strategy, especially if you make good usage of schematic variables.

The first case, maps the assumption and conclusion to two patterns, which
are ?A = ?B and ?C = ?D. The four schematics variables are in turn subject
to extraction of subexpressions; but those subexpressions, which are A1, B1,
C1 and C1, are defined before A, B, C and D, which may looks surprising.

The second and third case, make use of pattern matching too, but in the
purpose of annotations. This is readable, but not formally clean, as the
intent is rather to define ?C and then check that it is indeed matched in ?A

3

= ?C and ?B = ?C, but it formally assignes it instead.

For readability, all cases starts with an optional assume and a not optional
show, as on their own, the case statement are not verbose at all when viewed
in a PDF document.

Bad page break makes that document hugly. Also, indentation guide, present
during document authoring, and which help readability, are not there any-
more.

end

4

	Test explicit proof and presentation document with Isabelle.
	Definition of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fun sep
	Automated proof of a lemma about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fun sep
	Explicit manual proof of the same lemma
	Reminder of some of the involved rules
	Lemma's proof
	Comments about the style

