
Forkable Strings are Rare

Alexander Russell1, Cristopher Moore2, Aggelos Kiayias3, and Saad Quader1

1University of Connecticut
2University of Edinburgh

3Santa Fe Institute

March 20, 2017

A fundamental combinatorial notion related to the dynamics of the Ouroboros proof-of-stake blockchain protocol
is that of a forkable string. The original analysis of the protocol [2] established that the probability that a string of
length n is forkable, when drawn from a binomial distribution with parameter (1 − ε)/2, is exp(−Ω(

√
n)). In this note

we provide an improved estimate of exp(−Ω(n)).

Definition (Generalized margin and forkable strings). Let η ∈ {0, 1}∗ denote the empty string. For a string w ∈ {0, 1}∗
we define the generalized margin of w to be the pair (λ(w), µ(w)) ∈ Z × Z given by the following recursive rule:
(λ(η), µ(η)) = (0, 0) and, for all strings w ∈ {0, 1}∗,

(λ(w1), µ(w1)) = (λ(w) + 1, µ(w) + 1) , and

(λ(w0), µ(w0)) =


(λ(w) − 1, 0) if λ(w) > µ(w) = 0,
(0, µ(w) − 1) if λ(w) = 0,

(λ(w) − 1, µ(w) − 1) otherwise.

Observe that λ(w) ≥ 0 and λ(w) ≥ µ(w) for all strings w. We say that a string w is forkable if µ(w) ≥ 0.

Our goal is to prove the following theorem.

Theorem 1. Let w ∈ {0, 1}n be chosen randomly according to the probability law that independently assigns each wi

to the value 1 with probability (1 − ε)/2 for ε > 0. Then Pr[w is forkable] = exp(−Ω(n)).

We prove two quantitative versions of this theorem, reflected by the bounds below. The first bound follows from
analysis of a simple related martingale. The second bound requires more detailed analysis of the underlying variables,
but establishes a stronger estimate.

Bound 1. With the random variable w1 . . .wn ∈ {0, 1}
n defined as above so that Pr[wi = 1] = (1 − ε)/2,

Pr[w is forkable] = exp(−2ε4(1 −O(ε))n) .

Bound 2. With the random variable w1 . . .wn ∈ {0, 1}
n defined as above so that Pr[wi = 1] = (1 − ε)/2,

Pr[w is forkable] = exp(−ε3(1 −O(ε))n/2) .

Webeginwith a proof of Bound 1, which requires the following standard large deviation bound for supermartingales.

Theorem 2 (Azuma; Hoeffding. See [3, 4.16] for discussion). Let X0, . . . , Xn be a sequence of real-valued random
variables so that, for all t, E[Xt+1 | X0, . . . , Xt ] ≤ Xt and |Xt+1 − Xt | ≤ c for some constant c. Then for every Λ ≥ 0

Pr[Xn − X0 ≥ Λ] ≤ exp

(
−
Λ2

2nc2

)
.
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Proof of Bound 1. Let w1,w2, . . . be a sequence of independent random variables so that Pr[wi = 1] = (1 − ε)/2 as
in the statement of the theorem. For convenience, define the associated {±1}-valued random variables Wt = (−1)

1+wt

and observe that E[Wt ] = −ε .
Define λt = λ(w1 . . .wt ) and µt = µ(w1 . . .wt ) to be the components of the generalized margin for the string

w1 . . .wt . The analysis will rely on the ancillary random variables µt = min(0, µt ). Observe that Pr[w forkable] =
Pr[µ(w) ≥ 0] = Pr[µn = 0], so we may focus on the event that µn = 0. As an additional preparatory step, define the
constant α = (1 + ε)/(2ε) ≥ 1 and define the random variables Φt ∈ R by the inner product

Φt = (λt, µt ) ·

(
1
α

)
= λt + αµt .

The Φt will act as a “potential function” in the analysis: we will establish that Φn < 0 with high probability and,
considering that αµn ≤ λn + αµn = Φn, this implies µn < 0, as desired.

Let ∆t = Φt − Φt−1; we observe that—conditioned on any fixed value (λ, µ) for (λt, µt )—the random variable
∆t+1 ∈ [−(1 + α), 1 + α] has expectation no more than −ε . The analysis has four cases, depending on the various
regimes of the definition of generalized margin. When λ > 0 and µ < 0, λt+1 = λ +Wt+1 and µt+1 = µ+Wt+1, where
µ = max(0, µ); then ∆t+1 = (1 + α)Wt+1 and E[∆t+1] = −(1 + α)ε ≤ −ε . When λ > 0 and µ ≥ 0, λt+1 = λ +Wt+1

but µt+1 = µ so that ∆t+1 = Wt+1 and E[∆t+1] = −ε . Similarly, when λ = 0 and µ < 0, µt+1 = µ +Wt+1 while
λt+1 = λ +max(0,Wt+1); we may compute

E[∆t+1] =
1 − ε

2
(1 + α) −

1 + ε

2
α =

1 − ε

2
− εα =

1 − ε

2
− ε

(
1

ε
·
1 + ε

2

)
= −ε .

Finally, when λ = µ = 0 exactly one of the two random variables λt+1 and µt+1 differs from zero: if Wt+1 = 1 then
(λt+1, µt+1) = (1, 0); likewise, if Wt+1 = −1 then (λt+1, µt+1) = (0,−1). It follows that

E[∆t+1] =
1 − ε

2
−
1 + ε

2
α ≤ −ε .

Thus E[Φn] = E[
∑n

i ∆i] ≤ −εn and we wish to apply Azuma’s inequality to conclude that Pr[Φn ≥ 0] is
exponentially small. For this purpose, we transform the random variables Φt to a related supermartingale by shifting
them: specifically, define Φ̃t = Φt + ε t and ∆̃t = ∆t + ε so that Φ̃t =

∑t
i ∆̃t . Then

E[Φ̃t+1 | Φ̃1, . . . , Φ̃t ] = E[Φ̃t+1 | W1, . . . ,Wt ] ≤ Φ̃t , ∆̃t ∈ [−(1 + α) + ε, 1 + α + ε] ,

and Φ̃n = Φn + εn. It follows from Azuma’s inequality that

Pr[w forkable] = Pr[µn = 0] ≤ Pr[Φn ≥ 0] = Pr[Φ̃n ≥ εn]

≤ exp

(
−

ε2n2

2n(1 + α + ε)2

)
= exp

(
−

(
2ε2

1 + 3ε + 2ε2

)2
·

n
2

)
≤ exp

(
−

2ε4

1 + 35ε
· n

)
. �

We give a more detailed argument that achieves a bound of the form exp(−ε3(1 +O(ε))n/2) (Bound 2 above).

Proof of Bound 2. Anticipating the proof, wemake a few remarks about generating functions and stochastic dominance.
We reserve the term generating function to refer to an “ordinary” generating function which represents a sequence
a0, a1, . . . of non-negative real numbers by the formal power series A(Z) =

∑∞
t=0 at Z t . When A(1) =

∑
t at = 1 we say

that the generating function is a probability generating function; in this case, the generating function A can naturally
be associated with the integer-valued random variable A for which Pr[A = k] = ak . If the probability generating
functions A and B are associated with the random variables A and B, it is easy to check that A · B is the generating
function associated with the convolution A+B (where A and B are assumed to be independent). In general, we say that
the generating function A stochastically dominates B if

∑
t≤T at ≤

∑
t≤T bt for all T ≥ 0; we write B � A to denote

this state of affairs. Observe that when these are probability generating functions and may be associated with random
variables A and B it follows that Pr[A ≥ T] ≥ Pr[B ≥ T] for every T . If B1 � A1 and B2 � A2 then B1 ·B2 � A1 ·A2

and αB1 + βB2 � αA1 + βA2 (for any α, β ≥ 0). Finally, we remark that if A(Z) is a generating function which
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converges as a function of Z for |Z | < R, it follows that limn→∞ anRn = 0 and an = O(R−n); if A is a probability
generating function associated with the random variable A then it follows that Pr[A ≥ T] = O(R−T ).

We define p = (1 − ε)/2 and q = 1 − p and, as above, consider the independent {0, 1}-valued random variables
w1,w2, . . . where Pr[wt = 1] = p. As above we define the associated {±1}-valued random variables Wt = (−1)

1+wt .
Our strategy is to study the probability generating function

L(Z) =
∞∑
t=0

`t Z t

where `t = Pr[t is the last time µt = 0]. Controlling the decay of the coefficients `t suffices to give a bound on the
probability that w1 . . .wn is forkable because

Pr[w1 . . .wn is forkable] ≤ 1 −
n−1∑
t=0

`t =

∞∑
t=n

`t .

It seems challenging to give a closed-form algebraic expression for the generating function L; our approach is to develop
a closed-form expression for a probability generating function L̂ =

∑
t
ˆ̀
t Z t which stochastically dominates L and apply

the analytic properties of this closed form to bound the partial sums
∑

t≥n
ˆ̀
n. Observe that if L � L̂ then the series L̂

gives rise to an upper bound on the probability that w1 . . .wn is forkable as
∑∞

t=n `t ≤
∑∞

t=n
ˆ̀
t .

The coupled random variables λt and µt are Markovian in the sense that values (λs, µs) for s ≥ t are entirely
determined by (λt, µt ) and the subsequent values Wt+1, . . . of the underlying variables Wi . We organize the sequence
(λ0, µ0), (λ1, µ1), . . . into “epochs” punctuated by those times t for which λt = µt = 0. With this in mind, we define
M(Z) =

∑
mt Z t to be the generating function for the first completion of such an epoch, corresponding to the least t > 0

for which λt = µt = 0. As we discuss below,M(Z) is not a probability generating function, but ratherM(1) = 1− ε . It
follows that

L(Z) = ε(1 +M(Z) +M(Z)2 + · · · ) =
ε

1 −M(Z)
. (1)

Below we develop an analytic expression for a generating function M̂ for which M � M̂ and define L̂ = ε/(1 − M̂(Z)).
We then proceed as outlined above, noting that L � L̂ and using the asymptotics of L̂ to upper bound the probability
that a string is forkable.

In preparation for defining M̂, we set down two elementary generating functions for the “descent” and “ascent”
stopping times. Treating the random variables W1, . . . as defining a (negatively) biased random walk, define D to be
the generating function for the descent stopping time of the walk; this is the first time the random walk, starting at
0, visits −1. The natural recursive formulation of the descent time yields a simple algebraic equation for the descent
generating function, D(Z) = qZ + pZD(Z)2, and from this we may conclude

D(Z) =
1 −

√
1 − 4pqZ2

2pZ
.

We likewise consider the generating function A(Z) for the ascent stopping time, associated with the first time the walk,
starting at 0, visits 1: we have A(Z) = pZ + qZA(Z)2 and

A(Z) =
1 −

√
1 − 4pqZ2

2qZ
.

Note that while D is a probability generating function, the generating function A is not: according to the classical
“gambler’s ruin” analysis [1], the probability that a negatively-biased random walk starting at 0 ever rises to 1 is exactly
p/q; thus A(1) = p/q.

Returning to the generating function M above, we note that an epoch can have one of two “shapes”: in the first
case, the epoch is given by a walk for which W1 = 1 followed by a descent (so that λ returns to zero); in the second
case, the epoch is given by a walk for which W1 = −1, followed by an ascent (so that µ returns to zero), followed by the
eventual return of λ to 0. Considering that when λt > 0 it will return to zero in the future almost surely, it follows that

3



the probability that such a biased random walk will complete an epoch is p+ q(p/q) = 2p = 1− ε , as mentioned in the
discussion of (1) above. One technical difficulty arising in a complete analysis ofM concerns the second case discussed
above: while the distribution of the smallest t > 0 for which µt = 0 is proportional to A above, the distribution of the
smallest subsequent time t ′ for which λt′ = 0 depends on the value t. More specifically, the distribution of the return
time depends on the value of λt . Considering that λt ≤ t, however, this conditional distribution (of the return time of
λ to zero conditioned on t) is stochastically dominated by Dt , the time to descend t steps. This yields the following
generating function M̂ which, as described, stochastically dominates M:

M̂(Z) = pZ · D(Z) + qZ · D(Z) · A(Z · D(Z)) .

It remains to establish a bound on the radius of convergence of L̂. Recall that if the radius of convergence
of L̂ is exp(δ) it follows that Pr[w1 . . .wn is forkable] = O(exp(−δn)). A sufficient condition for convergence of
L̂(z) = ε/(1 − M̂(z)) at z is that that all generating functions appearing in the definition of M̂ converge at z and that the
resulting value M̂(z) < 1.

The generating function D(z) (and A(z)) converges when the discriminant 1 − 4pqz2 is positive; equivalently
|z | < 1/

√
1 − ε2 or |z | < 1 + ε2/2 + O(ε4). Considering M̂, it remains to determine when the second term,

qzD(z)A(zD(z)), converges; this is likewise determined by positivity of the discriminant, which is to say that

1 − (1 − ε2)

(
1 −

√
1 − (1 − ε2)z2

1 − ε

)2
> 0 .

Equivalently,

|z | <

√
1

1 + ε

(
2

√
1 − ε2

−
1

1 + ε

)
= 1 + ε3/2 +O(ε4) .

Note that when the series pz · D(z) converges, it converges to a value less than 1/2; the same is true of qz · A(z). It
follows that for |z | = 1 + ε3/2 +O(ε4), |M̂(z)| < 1 and L̂(z) converges, as desired. We conclude that

Pr[w1 . . .wn is forkable] = exp(−ε3(1 +O(ε))n/2) . �
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