Forkable Strings are Rare

Alexander Russell¹, Cristopher Moore², Aggelos Kiayias³, and Saad Quader¹

¹University of Connecticut ²University of Edinburgh ³Santa Fe Institute

March 20, 2017

A fundamental combinatorial notion related to the dynamics of the [Ouroboros](https://eprint.iacr.org/2016/889) proof-of-stake blockchain protocol is that of a *forkable string*. The original analysis of the protocol [\[2\]](#page-3-0) established that the probability that a string of √ length *n* is forkable, when drawn from a binomial distribution with parameter $(1 - \epsilon)/2$, is $\exp(-\Omega(\sqrt{n}))$. In this note we provide an improved estimate of exp(−Ω(*n*)).

Definition (Generalized margin and forkable strings). Let $\eta \in \{0,1\}^*$ denote the empty string. For a string $w \in \{0,1\}^*$
we define the generalized margin of w to be the pair $(\lambda(w), \mu(w)) \in \mathbb{Z} \times \mathbb{Z}$ given by the *we define the* generalized margin *of* w *to be the pair* $(\lambda(w), \mu(w)) \in \mathbb{Z} \times \mathbb{Z}$ *given by the following recursive rule:* $(\lambda(\eta), \mu(\eta)) = (0, 0)$ *and, for all strings* $w \in \{0, 1\}^*$,

$$
(\lambda(w1), \mu(w1)) = (\lambda(w) + 1, \mu(w) + 1), and
$$

$$
(\lambda(w0), \mu(w0)) = \begin{cases} (\lambda(w) - 1, 0) & \text{if } \lambda(w) > \mu(w) = 0, \\ (0, \mu(w) - 1) & \text{if } \lambda(w) = 0, \\ (\lambda(w) - 1, \mu(w) - 1) & \text{otherwise.} \end{cases}
$$

Ĩ, *Observe that* $\lambda(w) \ge 0$ *and* $\lambda(w) \ge \mu(w)$ *for all strings* w. We say that a string w is forkable if $\mu(w) \ge 0$.

Our goal is to prove the following theorem.

Theorem 1. *Let* $w \in \{0, 1\}^n$ *be chosen randomly according to the probability law that independently assigns each* w_i *to the value 1 with probability* $(1 - \epsilon)/2$ *for* $\epsilon > 0$. *Then* Prim is forkablel $-\exp(-O(n))$ *to the value 1 with probability* $(1 - \epsilon)/2$ *for* $\epsilon > 0$ *. Then* Pr[*w is forkable*] = exp($-\Omega(n)$ *).*

We prove two quantitative versions of this theorem, reflected by the bounds below. The first bound follows from analysis of a simple related martingale. The second bound requires more detailed analysis of the underlying variables, but establishes a stronger estimate.

Bound 1. *With the random variable* $w_1 \dots w_n \in \{0, 1\}^n$ *defined as above so that* $Pr[w_i = 1] = (1 - \epsilon)/2$,

 $Pr[w \text{ is forkable}] = \exp(-2\epsilon^4(1 - O(\epsilon))n).$

Bound 2. *With the random variable* $w_1 \dots w_n \in \{0, 1\}^n$ *defined as above so that* $Pr[w_i = 1] = (1 - \epsilon)/2$,

 $Pr[w \text{ is forkable}] = \exp(-\epsilon^3(1 - O(\epsilon))n/2).$

We begin with a proof of Bound [1,](#page-0-0) which requires the following standard large deviation bound for supermartingales.

Theorem 2 (Azuma; Hoeffding. See [\[3,](#page-3-1) 4.16] for discussion). Let X_0, \ldots, X_n be a sequence of real-valued random $$

$$
\Pr[X_n - X_0 \ge \Lambda] \le \exp\left(-\frac{\Lambda^2}{2n\mathbf{c}^2}\right).
$$

Proof of Bound [1.](#page-0-0) Let $w_1, w_2, ...$ be a sequence of independent random variables so that $Pr[w_i = 1] = (1 - \epsilon)/2$ as in the statement of the theorem. For convenience, define the associated $\{\pm 1\}$ -valued random variables $W_t = (-1)^{1+w_t}$ and observe that $E[W_t] = -\epsilon$.

Define $\lambda_t = \lambda(w_1 \dots w_t)$ and $\mu_t = \mu(w_1 \dots w_t)$ to be the components of the generalized margin for the string $w_1 \dots w_t$. The analysis will rely on the ancillary random variables $\overline{\mu}_t = \min(0, \mu_t)$. Observe that $Pr[w$ forkable = $Pr[\mu(w) \ge 0] = Pr[\overline{\mu}_n = 0]$, so we may focus on the event that $\overline{\mu}_n = 0$. As an additional preparatory step, define the constant $\alpha = (1 + \epsilon)/(2\epsilon) \ge 1$ and define the random variables $\Phi_t \in \mathbb{R}$ by the inner product

$$
\mathbf{\Phi}_t = (\lambda_t, \overline{\mu}_t) \cdot \begin{pmatrix} 1 \\ \alpha \end{pmatrix} = \lambda_t + \alpha \overline{\mu}_t.
$$

The Φ_t will act as a "potential function" in the analysis: we will establish that $\Phi_n < 0$ with high probability and, considering that $\alpha \overline{\mu}_n \leq \lambda_n + \alpha \overline{\mu}_n = \Phi_n$, this implies $\overline{\mu}_n < 0$, as desired.

Let $\Delta_t = \Phi_t - \Phi_{t-1}$; we observe that—conditioned on any fixed value (λ, μ) for (λ_t, μ_t) —the random variable Δ_{t+1} ∈ $\left[-(1+\alpha), 1+\alpha\right]$ has expectation no more than $-\epsilon$. The analysis has four cases, depending on the various regimes of the definition of generalized margin. When $\lambda > 0$ and $\mu < 0$, $\lambda_{t+1} = \lambda + W_{t+1}$ and $\overline{\mu}_{t+1} = \overline{\mu} + W_{t+1}$, where $\overline{\mu} = \max(0, \mu)$; then $\Delta_{t+1} = (1 + \alpha)W_{t+1}$ and $\mathbb{E}[\Delta_{t+1}] = -(1 + \alpha)\epsilon \le -\epsilon$. When $\lambda > 0$ and $\mu \ge 0$, $\lambda_{t+1} = \lambda + W_{t+1}$ but $\overline{\mu}_{t+1} = \overline{\mu}$ so that $\overline{\Delta}_{t+1} = W_{t+1}$ and $\mathbb{E}[\Delta_{t+1}] = -\epsilon$. Similarly, when $\lambda = 0$ and $\mu < 0$, $\overline{\mu}_{t+1} = \overline{\mu} + W_{t+1}$ while $\lambda_{t+1} = \lambda + \max(0, W_{t+1})$; we may compute

$$
\mathbb{E}[\Delta_{t+1}] = \frac{1-\epsilon}{2} (1+\alpha) - \frac{1+\epsilon}{2} \alpha = \frac{1-\epsilon}{2} - \epsilon \alpha = \frac{1-\epsilon}{2} - \epsilon \left(\frac{1}{\epsilon} \cdot \frac{1+\epsilon}{2} \right) = -\epsilon.
$$

Finally, when $\lambda = \mu = 0$ exactly one of the two random variables λ_{t+1} and $\overline{\mu}_{t+1}$ differs from zero: if $W_{t+1} = 1$ then $(\lambda_{t+1}, \overline{\mu}_{t+1}) = (1, 0)$; likewise, if $W_{t+1} = -1$ then $(\lambda_{t+1}, \overline{\mu}_{t+1}) = (0, -1)$. It follows that

$$
\mathbb{E}[\Delta_{t+1}] = \frac{1-\epsilon}{2} - \frac{1+\epsilon}{2}\alpha \leq -\epsilon.
$$

Thus $\mathbb{E}[\Phi_n] = \mathbb{E}[\sum_i^n \Delta_i] \le -\epsilon n$ and we wish to apply **Azuma's inequality** to conclude that $\Pr[\Phi_n \ge 0]$ is ϵ xponentially small. For this purpose, we transform the random variables Φ_t to a related supermartingale by shifting them: specifically, define $\tilde{\Phi}_t = \Phi_t + \epsilon t$ and $\tilde{\Delta}_t = \Delta_t + \epsilon$ so that $\tilde{\Phi}_t = \sum_i^t \tilde{\Delta}_t$. Then

$$
\mathbb{E}[\tilde{\Phi}_{t+1} \mid \tilde{\Phi}_1, \dots, \tilde{\Phi}_t] \equiv \mathbb{E}[\tilde{\Phi}_{t+1} \mid W_1, \dots, W_t] \leq \tilde{\Phi}_t, \qquad \tilde{\Delta}_t \in [-(1+\alpha)+\epsilon, 1+\alpha+\epsilon],
$$

and $\tilde{\Phi}_n = \Phi_n + \epsilon n$. It follows from Azuma's inequality that

$$
\Pr[w \text{ forkable}] = \Pr[\overline{\mu}_n = 0] \le \Pr[\Phi_n \ge 0] = \Pr[\tilde{\Phi}_n \ge \epsilon n]
$$

$$
\le \exp\left(-\frac{\epsilon^2 n^2}{2n(1 + \alpha + \epsilon)^2}\right) = \exp\left(-\left(\frac{2\epsilon^2}{1 + 3\epsilon + 2\epsilon^2}\right)^2 \cdot \frac{n}{2}\right) \le \exp\left(-\frac{2\epsilon^4}{1 + 35\epsilon} \cdot n\right).
$$

We give a more detailed argument that achieves a bound of the form $\exp(-\epsilon^3(1+O(\epsilon))n/2)$ (Bound [2](#page-0-1) above).

Proof of Bound [2.](#page-0-1) Anticipating the proof, we make a few remarks about generating functions and stochastic dominance. We reserve the term *generating function* to refer to an "ordinary" generating function which represents a sequence a_0, a_1, \ldots of non-negative real numbers by the formal power series $\overline{A}(Z) = \sum_{i=0}^{\infty} a_i Z^i$. When $\overline{A}(1) = \sum_i a_i = 1$ we say that the generating function is a probability *generating function*; in this case, the ge that the generating function is a *probability generating function*; in this case, the generating function A can naturally be associated with the integer-valued random variable *A* for which $Pr[A = k] = a_k$. If the probability generating functions A and B are associated with the random variables A and B, it is easy to check that $A \cdot B$ is the generating function associated with the convolution $A + B$ (where *A* and *B* are assumed to be independent). In general, we say that the generating function A *stochastically dominates* B if $\sum_{t \leq T} a_t \leq \sum_{t \leq T} b_t$ for all $T \geq 0$; we write B \leq A to denote this state of affairs. Observe that when these are probability generating functions and may be associated with random variables *A* and *B* it follows that $Pr[A \ge T] \ge Pr[B \ge T]$ for every *T*. If $B_1 \le A_1$ and $B_2 \le A_2$ then $B_1 \cdot B_2 \le A_1 \cdot A_2$ and $\alpha B_1 + \beta B_2 \le \alpha A_1 + \beta A_2$ (for any $\alpha, \beta \ge 0$). Finally, we remark that if A(*Z*) is a generating function which converges as a function of *Z* for $|Z| < R$, it follows that $\lim_{n\to\infty} a_n R^n = 0$ and $a_n = O(R^{-n})$; if A is a probability generating function associated with the random variable *A* then it follows that $Pr[A > T] - O(R^{-T})$ generating function associated with the random variable *A* then it follows that $Pr[A \ge T] = O(R^{-T})$.

We define $p = (1 - \epsilon)/2$ and $q = 1 - p$ and, as above, consider the independent $\{0, 1\}$ -valued random variables w_1, w_2, \ldots where $Pr[w_t = 1] = p$. As above we define the associated $\{\pm 1\}$ -valued random variables $W_t = (-1)^{1+w_t}$. Our strategy is to study the probability generating function

$$
\mathsf{L}(Z) = \sum_{t=0}^{\infty} \ell_t Z^t
$$

where $\ell_t = \Pr[t]$ is the last time $\mu_t = 0$. Controlling the decay of the coefficients ℓ_t suffices to give a bound on the probability that $w_1 \ldots w_n$ is forkable because

$$
\Pr[w_1 \ldots w_n \text{ is forkable}] \le 1 - \sum_{t=0}^{n-1} \ell_t = \sum_{t=n}^{\infty} \ell_t \, .
$$

It seems challenging to give a closed-form algebraic expression for the generating function L; our approach is to develop a closed-form expression for a probability generating function $\hat{L} = \sum_t \hat{l}_t Z^t$ which stochastically dominates L and apply
the applytic properties of this closed form to bound the partial sums $\sum \hat{l}$. Observe that if the analytic properties of this closed form to bound the partial sums $\sum_{t \geq n} \hat{\ell}_n$. Observe that if $L \leq \hat{L}$ then the series \hat{L} gives rise to an upper bound on the probability that $w_1 \n\t\dots w_n$ is forkable as $\sum_{i=n}^{\infty} \ell_i \leq \sum_{i=n}^{\infty} \hat{\ell}_i$.
The counled random variables λ , and μ , are Markovian in the sense that values (λ, μ) .

The coupled random variables λ_t and μ_t are Markovian in the sense that values (λ_s, μ_s) for $s \ge t$ are entirely determined by (λ_t, μ_t) and the subsequent values W_{t+1}, \ldots of the underlying variables W_i . We organize the sequence (λ_2, μ_2) (λ_3, μ_3) into "enochs" punctuated by those times t for which $\lambda_i = \mu_i = 0$. With t $(\lambda_0, \mu_0), (\lambda_1, \mu_1), \ldots$ into "epochs" punctuated by those times *t* for which $\lambda_t = \mu_t = 0$. With this in mind, we define $M(Z) = \sum m_t Z^t$ to be the generating function for the first completion of such an epoch, corresponding to the least *t* > 0
for which $\lambda = \mu = 0$. As we discuss below $M(Z)$ is not a probability generating function, but rathe for which $\lambda_t = \mu_t = 0$. As we discuss below, M(*Z*) is not a probability generating function, but rather M(1) = 1 – ϵ . It follows that

$$
L(Z) = \epsilon (1 + M(Z) + M(Z)^{2} + \cdots) = \frac{\epsilon}{1 - M(Z)}.
$$
 (1)

Below we develop an analytic expression for a generating function \hat{M} for which $M \leq \hat{M}$ and define $\hat{L} = \epsilon/(1 - \hat{M}(Z)).$ We then proceed as outlined above, noting that $L \leq \hat{L}$ and using the asymptotics of \hat{L} to upper bound the probability that a string is forkable.

In preparation for defining \hat{M} , we set down two elementary generating functions for the "descent" and "ascent" stopping times. Treating the random variables W_1, \ldots as defining a (negatively) biased random walk, define D to be the generating function for the *descent stopping time* of the walk; this is the first time the random walk, starting at 0, visits −1. The natural recursive formulation of the descent time yields a simple algebraic equation for the descent generating function, $D(Z) = qZ + pZD(Z)^2$, and from this we may conclude

$$
D(Z) = \frac{1 - \sqrt{1 - 4pqZ^2}}{2pZ}
$$

We likewise consider the generating function $A(Z)$ for the *ascent stopping time*, associated with the first time the walk, starting at 0, visits 1: we have $A(Z) = pZ + qZA(Z)^2$ and

$$
A(Z) = \frac{1 - \sqrt{1 - 4pqZ^2}}{2qZ}
$$

Note that while D is a probability generating function, the generating function A is not: according to the classical "gambler's ruin" analysis [\[1\]](#page-3-2), the probability that a negatively-biased random walk starting at 0 ever rises to 1 is exactly *p*/*q*; thus $A(1) = p/q$.

Returning to the generating function M above, we note that an epoch can have one of two "shapes": in the first case, the epoch is given by a walk for which $W_1 = 1$ followed by a descent (so that λ returns to zero); in the second case, the epoch is given by a walk for which $W_1 = -1$, followed by an ascent (so that μ returns to zero), followed by the eventual return of λ to 0. Considering that when $\lambda_t > 0$ it will return to zero in the future almost surely, it follows that the probability that such a biased random walk will complete an epoch is $p + q(p/q) = 2p = 1 - \epsilon$, as mentioned in the discussion of [\(1\)](#page-2-0) above. One technical difficulty arising in a complete analysis of M concerns the second case discussed above: while the distribution of the smallest $t > 0$ for which $\mu_t = 0$ is proportional to A above, the distribution of the smallest subsequent time *t'* for which $\lambda_{t'} = 0$ depends on the value *t*. More specifically, the distribution of the return time depends on the value of λ . Considering that $\lambda_{s} \leq t$ however this conditional distr time depends on the value of λ_t . Considering that $\lambda_t \leq t$, however, this conditional distribution (of the return time of λ to zero conditioned on t) is stochastically dominated by D^t the time to descend t steps λ to zero conditioned on *t*) is stochastically dominated by D^t , the time to descend *t* steps. This yields the following
generating function \hat{M} which as described, stochastically dominates M : generating function \dot{M} which, as described, stochastically dominates M:

$$
\hat{M}(Z) = pZ \cdot D(Z) + qZ \cdot D(Z) \cdot A(Z \cdot D(Z)).
$$

It remains to establish a bound on the radius of convergence of \hat{L} . Recall that if the radius of convergence of L is $\exp(\delta)$ it follows that $Pr[w_1 \dots w_n]$ is forkable] = $O(\exp(-\delta n))$. A sufficient condition for convergence of $\hat{L}(z) = \epsilon/(1 - \hat{M}(z))$ at *z* is that that all generating functions appearing in the definition of \hat{M} converge at *z* and that the resulting value $\hat{M}(z) < 1$.

The generating function $D(z)$ (and $A(z)$) converges when the discriminant $1 - 4pqz^2$ is positive; equivalently $|z| < 1/\sqrt{1-\epsilon^2}$ or $|z| < 1 + \epsilon^2/2 + O(\epsilon^4)$. Considering \hat{M} , it remains to determine when the second term, $qzD(z)A(zD(z))$, converges; this is likewise determined by positivity of the discriminant, which is to say that

$$
1 - (1 - \epsilon^2) \left(\frac{1 - \sqrt{1 - (1 - \epsilon^2) z^2}}{1 - \epsilon} \right)^2 > 0.
$$

Equivalently,

$$
|z| < \sqrt{\frac{1}{1+\epsilon} \left(\frac{2}{\sqrt{1-\epsilon^2}} - \frac{1}{1+\epsilon} \right)} = 1 + \epsilon^3 / 2 + O(\epsilon^4).
$$

Note that when the series $pz \cdot D(z)$ converges, it converges to a value less than $1/2$; the same is true of $qz \cdot A(z)$. It follows that for $|z| = 1 + \epsilon^3/2 + O(\epsilon^4)$, $|\hat{M}(z)| < 1$ and $\hat{L}(z)$ converges, as desired. We conclude that

$$
\Pr[w_1 \dots w_n \text{ is forkable}] = \exp(-\epsilon^3 (1 + O(\epsilon))n/2).
$$

References

- [1] Charles M. Grinstead and J. Laurie Snell. *Introduction to Probability*. American Mathematical Association, 1997.
- [2] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report 2016/889, 2016. [http://eprint.iacr.](http://eprint.iacr.org/2016/889) [org/2016/889](http://eprint.iacr.org/2016/889).
- [3] Rajeev Motwani and Prabhakar Raghavan. *Randomized Algorithms*. Cambridge University Press, New York, NY, USA, 1995.