Overview of the Inequalitor

Noam Neer

July 11, 2018

Contents

1 Introduction 1
2 Some Isabelle Examples 4
3 Some Inequalitor Examples 7
4 The Inequalitor’s Power Operator 9

1 Introduction

The Inequalitor is an experimental (and unfinished) proof assistant for the
language of real numbers and special functions. It is a standalone Python
based tool with its own logic, but its proofs were meant to be translatable to
Isabelle. This document concentrates on its rewriting capabilities, in com-
parison to Isabelle’s.

Isabelle has a few tools for rewriting — the simplifier, Sledgehammer etc.
All of them have their limitations. for example,

e Using the simplifier often requires the user to choose which lemma
to use, avoid, or reverse. This requires familiarity with large lemma
libraries.

e If T understand correctly, the simplifier difficulties with conditional
rewriting are the reason why Isabelle departs from mathematical con-
ventions in some places. For example, 1/0 is defined to be 0. This

makes laws like
a/bxc=axc/b

1/9

2/9

true unconditionally and eases simplification, but the proofs depend
upon this special definition and can’t be translated to systems that do
adhere to mathematical conventions. There are similar problems with
powers.

e Sledgehammer is unpredictable, and can fail on very simple problems.
The underlying algorithm is very difficult to explain, and is somewhat
non-deterministic.

e Other tools seem to be more specialized, for example to linear arith-
metic or rational expressions.

The Inequalitor’s rewriting algorithm tries, in its very specific domain, to
improve upon Isabelle’s tools. Its range of solvable problems seems to be
larger, and its user is not required to be familiar with the lemma libraries.
The lemma libraries follow mathematical conventions more closely. The al-
gorithm itself is deterministic and can be explained, at least in general.

Like many algorithms in this field the Inequalitor’s algorithm is a certain
combination of enumeration and local search over the space of all expressions,
but the basic steps can be more complex than an application of an identity
to a sub-expression. For example, the steps contain :

e expansion : multiplying all out, as in

(a+b)(a+b)+1—a*+2ab+V* +1

e common denominator :

a+1/a— (a*+1)/a

e exponent /log pushdown : simplifications of the form

((ab)c)d N acdbcd
log(ab®) — log(a) + 2log(b)

Some of the steps remind of Isabelle’s simprocs, ao the algorithm can be
inaccurately described as a local search with simprocs. To help conditional
rewriting, the Inequalitor keeps track of properties of expressions that were
rigorously proved, such as sign, and stores them in an accessible database.
Using this database enables the “simprocs” to know if their manipulations of
the expressions are mathematically valid, and if so to prove them correctly.

The design of the lemma libraries is also important, especially with re-
spect to powers. Isabelle has two power operators, =~ and powr. The first

2/9

3/9

requires the exponent to be a natural number, the second doesn’t but be-
haves well only if the base is positive. Each has different lemmas describing
its properties, where powr’s lemmas seem to be less developed. As a result
many problems either can’t be formulated correctly or are difficult to prove.
The Inequalitor has a single power operator that (almost) generalizes both.!
This simplifies many things, but translating the proofs to Isabelle will require
defining a new power operator.

The Inequalitor is not finished. The only special functions currently sup-
ported are powers, logarithms and absolute values, and the translation of the
proofs to Isabelle is yet to be implemented. But it is developed enough to
be presented for initial review.

Tt only almost generalizes both since they disagree on some values. For example 0°
equals 1 in the first power and 0 in the second. In the Inequalitor 0° is unspecified, which
is the right convention for real analysis. For abstract algebra 1 could be more a suitable
choice.

3/9

4/9

2 Some Isabelle Examples

Here I present some examples which are not trivial in Isabelle 2017. “Not
trivial” doesn’t mean that they are impossible to prove, but that they can’t
be solved with a single application of a standard command. The commands
I consider standard are auto, simp, (simp add: field simps), (simp
add: divide_simps), tryO, try and Sledgehammer. Using the simplifier
with other modifiers is not considered standard, since it requires familiarity
with Isabelle’s lemma libraries.

Since problems that involve only the four basic operations +,-,*,/ are
usually solvable with (simp add: field_simps), the problems here involve
special functions. We start with few problems that involve only =, the ordi-
nary power operator (that requires natural numbers as exponents.) Wherever
I knew how to solve the problem I added the appropriate command, but it
wasn’t found by the standard commands. Otherwise I just wrote the com-
mand oops.

1. lemma "((a::real)+b+1) " (c::nat) *x (a+tb+1)"2
(1+a+b) "c * (a"2+2*a*xb+b"2+2xa+2*xb+1)"
oops

2. lemma "((a::real)”(c::nat) + (b::real)”c)”2
a”(2%c) + 2*a“cxb”c + b~ (2%c)"
by (simp add: power2_sum power_even_eq)

This command only works when the exponent is 2. If it is changed to
3, I am not sure how to do it in a single command,

lemma "((a::real)”(c::nat) + b~c)~3 =
a~(3%c) + 3*xa~(2*xc)*b~c + 3%a"c*kb~(2%c) + b~ (3*c)"
oops

3. lemma "(2::real)”a * 37 (3xa) = (2%3)~a *x 3~ (2*a)"
oops

Next we come to problems involving the real power operator powr. powr
allows real numbers as exponents, but behaves correctly only if the base is
positive. Because of that one can’t prove

4. lemma "((a::real) powr 2) = ((-a) powr 2)"
oops
(* This is probably unprovable since it isn’t
necessarily true in HOL. x)

4/9

5/9

Even if we stick to positive bases, many things that work for = don’t work
for powr. For example

5. lemma "(a::real)>0 ==> (b::real)>0 ==> a-b>0 ==>
(a - b) powr 2 =
(a powr 2) - 2*axb + (b powr 2)"
oops
(* The analogous problem with ~ is solvable by
sledgehammer. *)

6. lemma "((2::real) powr (2*x)) =
((4::real) powr (x::real))"
oops
(* The analogous problem with ~ is solvable by
sledgehammer. *)

Using powr for roots we also have problems,

7. lemma "(2::real) * ((2::real) powr (1/2)) =
((8::real) powr (1/2))"
oops

8. lemma "(x::real)>0 ==>
(((A+x)* (1+x) * (1+x)) powr (1/3)) = 1+x"
oops

And the interaction between the two power operators is also problematic,

9. lemma "(x::real)>0 ==> (((1+x)~2) powr (1/2)) = 1+x"
oops
(* Here sledgehammer either didn’t finish, or suggested a
command that didn’t work. *)

Next come few examples with logarithms and absolute values.

10. lemma "(ca::real)”~=0 ==>
(cb::real)™=0 ==>
1n(ca”100)*1n(cb~2) = 1n(ca”"2)*1n(cb~100)"
oops
In this case Sledgehammer was able to solve it when the 100 was re-
placed by 4 :

5/9

11.

12.

6/9

lemma "(ca::real) =0 ==>
(cb::real) =0 ==>
In(ca”4)*1n(cb~2) = 1n(ca”2)*1ln(cb”~4)"
by (smt ln_realpow
mult.commute numeral_BitO
power2_less_eq_zero_iff
power_add power_even_eq
semiring normalization_rules(16)
semiring_normalization_rules(36))

Sledgehammer was also able to solve it when ~ was replaced by powr :

lemma "(ca::real)™=0 ==>
(cb::real) =0 ==>
In(ca powr 100)*1n(cb powr 2) =
In(ca powr 2)*1n(cb powr 100)"
by (simp add: powr_def)

But tracing the simplifier shows that it succeeded by rewriting both
to 200*1n(ca)*1n(cb), which in ordinary mathematics is ill defined
since ca,cb are not known to be positive. This was possible since (7x
powr 7a) is defined as

if ?x = 0 then 0 else exp (?7a * 1ln 7x)

which again is not true in ordinary mathematics. If powr was defined
in a more standard way, this proof wouldn’t work.

lemma "(x::real)>0 ==> y>0 ==>
(In(x/y))~2 + (In(y/x)) "2 + 2x(In(x/y))*(In(y/x)) =

Oll
oops
(* Here sledgehammer suggested commands thet didn’t
work. *)

lemma "(x::real)>0 ==> y>0 ==>
2% (In(\<bar>x+y\<bar>)) = (1In (x"2+2xx*y+y~2))"
oops

6/9

7/9

3 Some Inequalitor Examples

All the problems presented before can be solved with a single Inequalitor’s
command, as demonstrated here. The Inequalitor is a Python tool which
is loaded from the Python interpreter’s command line, and here we assume
everything was already installed and loaded properly.

A proof is started by creating a proof object,

>>> prf = ie_proof()

Proving that one expression equals the other is done by calling the simplifi-
cation method. We demonstrate it with problem 4, which was

lemma "((a::real) powr 2) = ((-a) powr 2)"
Here we just call
>>> prf.uc_simp(ca**2, (-ca)**2)

ca,cb,cc,cd are four predefined logical constants. The Inequalitor has no
types, and everything is assumed to be real. It does recognize integers, but
as reals satisfying a certain formula. In this case the simplifier prints

global, ie_proof_index(89) tcaxx2 = (-ca)*x*2
ie_proof_index(89)

Which means it was able to prove the identity, and it is the 90’th formula in
the proof.

Next we go back to problem 2,

lemma "((a::real) " (c::nat) + (b::real)”c)"2 =
a~(2xc) + 2*xa”~c*xb”"c + b~ (2xc)"

Now as it is written this lemma doesn’t hold in the Inequalitor, since when
ca,cb,cc are 0 the powers are unspecified (which is the right convention
for real analysis.) Hence we’ll add the assumption that cc is positive. The
logical formulas stating that cc is positive integer are created as follows,

>>> je_intP(cc)
(ie_formula) intP(cc)
>>> je_gt(cc,0)
(ie_formula) cc>0

In order to use them in the proof we must create a proof object with these
as its assumptions, which is done by

7/9

8/9

>>> prf = ie_proof(ie_intP(cc), ie_gt(cc,0))
global, ie_proof_index(’assm0’) : intP(cc)
global, ie_proof_index(’assml’) : cc>0

Now we can call the simplifier,

>>> prf.uc_simp((cax*kcct+cb**cc)**2,
cax* (2%cc) + 2kcaxkcckxcbxxcc + cb**x(2%cc))
global, ie_proof_index(104)
(caxxcc+cb**cc) **x 2 =
cax*(2%cc) + 2*caxkcckcbxkxcc + cbxx(2%cc)
ie_proof_index(104)

In this way all the problems can be solved, and sometimes more difficult
variants of them. For example, problem 8

lemma "(x::real)>0 ==>
(((1+x)*(1+x) *(1+x)) powr (1/3)) = 1+x"

can be proved in a slightly more difficult form,

>>> prf = ie_proof(ie_gt(ca,0))
global, ie_proof_index(’assm0’) : ca>0
>>> prf.uc_simp((1+3*ca+3*ca**2+ca**3)**xie_rat(1,3), 1+ca)
global, ie_proof_index(666)

(1 + 3*xca + 3%cax*2 + ca**3) *x r(1/3) = 1+ca
ie_proof_index(666)

8/9

9/9

4 The Inequalitor’s Power Operator

The expression ca**cb is unspecified unless at least one of the following
holds :

1. cb is a positive integer.

2. cb is an integer and ca is non-zero.
3. cb is positive and ca is non-negative.
4. ca is positive.

These conditions are not disjoint. If at least one holds and the power is
specified, its value is identical to the ordinary mathematical value.

In some mathematical texts expressions like c}l/ ? are well defined for ev-
ery ¢,. In the Inequalitor they are specified only if ¢, > 0. So the In-
equalitor doesn’t follow all mathematical conventions precisely, but since it
is “less” specified than ordinary mathematics, Inequalitor proofs are (poten-
tially) translatable to any system that follows them.

In the past I started developing an analogous power operator in Isabelle,
based on the definition

(* mathematical real power operator *)

definition mrpow :: '"real ==> real ==> real"
(infixr "**x" 80)
where "x ** y ==
if x>0
then (x powr y)
else (if x=0
then (if y>0
then 0
else (THE z::real. False))
else (if y \<in> Ints
then (if y >=0
then x “(nat(floor y))
else (1/x)"~(nat(- floor y)))
else (THE z::real. False)

)u

I didn’t finish proving all the necessary properties of this operator, but it can
be done.

9/9

