| sabelle Primer for M athematicians

B. Grechuk

Abstract

This is a quick introduction to the Isabelle/HOL proof atasis, aimed for mathematicians who would
like to use it for formalization of mathematical results.

1 Introduction

Interactive proof assistants are special programs, which make it pssibheck mathematical results up to
a nearly absolute level of certainty. Clearly, computers cannot readirgherstand usual human language,
and even if they could, a typical textbook proof usually omits some detailsamtbt be treated as absolutely
rigorous. To check the proof in an automated proof assistant, you needt&oit using special language,
understandable by computer. This "translation” to computer language id tadléormalization of the proof.

There are many proof assistants with different languages and undgltgits, and the first step is to
choose a particular one. Suppose that you chose the Isabelle/HOLgssistant and want to learn how to
perform formalization using it. The obvious first step is to download the tutfrjaind this should certainly
be done. However, not everyone will want to read a 218-page tubmiate formalizing the first simple lemma.
In contrast to the tutorial, this primer is aimed to help you start formalization immediatelylearn the Isabelle
language (called Isar) in the process, based on examples. Sometimesehawve will still refer to the tutorial.

You can work with Isabelle directly, or use a graphical user interfage highly advised to use a graphical
user interface, and the recommended interface is the Emacs-base@ermral. From now on | will assume
that you use this interface.

First, you need to install Isabelle with Proof-General on your computee. ifistallation process depends
on the computer platform you use. All the programs and instructions caaupel fon the Isabelle website
http://isabelle.in.tum.de/ and in the tutorial. Supposing you have installed the pragreectly, you are ready
to work. Let us start!

2 A First Lemma

If you open Proof General, you see an empty window where it is possibletéo text. This file is automatically
called Scratch.thy. The whole Isabelle library consists of files with the ewterithy”, which are called
theories. A theory in Isabelle is just a collection of definitions, lemmas andahespiike chapters in a book.
Dozens of theories are installed with Isabelle on your computer, and yausesany lemma from these theories
to derive your results. More important at this stage is that you can usettiesries to study Isar - the language
of Isabelle. Instead of reading hundreds pages of tutorial, let’s just epme theory and see how it looks.

To open an existing theory, you use the Fi{eOpen File command in the menu, then choose the folder
where you installed Isabelle, thensrc > HOL, and here is a huge theory collection. Let us, for example, open
theory Fun.thy, in which basic notions about functions are introduced.tfiéory starts with some comments
and explanations of what is done here, embraced by open parergtegsasid star-closed parenthesis, like this:

(*comment*)

As you have probably guessed, in such comments you can write whatevesyt, and this will not affect your
proofs. Other possible syntax for commentstake {*comment* }, -- {*comment* }, --"comment" . Because
large formal proofs are sometimes hard to understand, it is desirable tosweitecomments, but for now we
can omit them together with the optiorielader command and look further, where the theory actually starts.

theory Fun

Ok, this is easy. So, every theory should start with keywiogdry followed by the theory name. We can open
Isabelle in a new window, and write similarly:

theory MyFirst
The next lines in Fun.thy are

imports Complete _Lattice
begin

Clearly, the commanbkegin just starts the theory. The commangborts requires a little bit more explanation.
Theories in Isabelle form a huge directed graph - some theories "impo#gf otfes to refer to their results and
definitions. You will need to import at least one theory, otherwise you wikehi@ prove everything from
scratch. You can import several theories using a command like

imports <theoryNamel > <theoryName2 > <theoryName3 >

but importing a theory obviously means importing the whole hierarchy behingkigfibre it is usually enough
to import just one theory with a rich enough parent hierarchy. For a gtangy be a good choice to import
Main.thy, which accumulates all the basic theories in arithmetic. So, let us write

imports Main
begin

and look at the example Fun.thy again. After the comntmgth , we can see some comment of the fdemi
{* ... * } ,which we will ignore, and then finally we see the first lemma of the theory

lemma expand _fund _eq: f=g& (W fx=gx)"

From this example we see, that every lemma starts with keylemrda followed by the lemma’s name, a colon
., and the lemma formulation in quotes. Clearly, the name of the lemma is given foe fefierences. Let us
ignore this lemma for now, and start with something which seems to be easiervty anal write

lemma two _two: " 2+2=4"

Now, we want to prove this lemma. The statement which we want to prove is @alipadl. If we look at
Fun.thy, we can guess that text following every lemma is the proof. First lempendfund.eq has a 4-line
proof, which looks like

apply(...)

apply(...)
done

This is one of the general proof strategies in Isabelle. Commagplyg means that we want to apply some
method to prove our goal. After this, the goal is usually simplified, and we ngthar method to proceed.
When the goal is proved, we write commadtahe . But for our simple lemma we do not expect a long proof,
we would prefer to prove such a statements in one step. So, let us looksacitied lemma in Fun.thy

lemma apply _inverse:
fx=u —(Vx. Px -g(fxx=%x —Px—=>x=gu
by auto

You can see, that the whole proof here is just the phmasauto . auto is a method which tries to prove the
statement automatically. This method combines logical reasoning and arithmesiotraations to simplify
the goal and ideally prove it completely. Commadayds just a replacement for two commarepply anddone,
namelyby(method) is the same aspply(method) done . It requires the method to solve a goal completely,
and will fail otherwise. Also, from this example we can see, tiyabuto can be written without parentheses.
OK, let us try to prove our simple lemma similarly:

lemma two _two: "2+2=4" by auto

Next step is to check in Isabelle that the proof is correct. We can click ooff3enerat> Next Step in
the menu. This is the same as clicking on the right arrow on the tool-bar patdlglow the menu. If you
click once, you see that the start of your theory has a different calnich means that this part is checked
and no misprints found. We will call this checking process "executionyoli click second time, the lemma
formulation is accepted, and if you click the third time, you will see the med&aitgd to finish proof
At command by in the window below, which is called the Proof General response buffer.

The usual strategy in this case is to replagdoy apply and see how faauto can proceed. But in this case
we will see the messagepty result sequence -- proof command failed At command "ap ply" . This
message indicates that method cannot make any progress in solving tleddbence cannot be applied here
at all.

So, does it mean that we cannot prove even such a simple lemma automaticallyahel® Clearly, in this
case formalizing serious mathematical results would be completely impossibléailésa-ortunately, this is
not the case. To see the problem, let us go back (left arrow on the tophbal), then try again, but execute
only the lemma formulation and look at the response buffer (window below).

proof (prove): step O
goal (1 subgoal):
1. (2:7a)+(2:7a)=(4:"a)

The lineproof (prove): step 0 just indicates that proof starts, then Isabelle shows us how it under-
stands our lemma. Symbol indicates type of the object. The point is that we often use the same symbols
in mathematics to indicate formally different notions. Of course, this is completedgaeptable in formal
proof system, and therefore every constant or variable has a typeh wlearly indicates what we mean. For
example, we use symbol "2” in mathematical text to indicate natural numbémnuegber, complex number,
or even 2 in a non-decimal system, in which 2+2 may not be 4. Syfabdknotes dype variable, meaning
that the system understands that 2, 2, and 4 are meant to have the sanbeityfdeas no idea what this type
is. Sometimes this works: for example, if we write the lenftn2, we can easily prove it by auto, because this
lemma is true for every type. So, formally, we wanted to state our lemma aboualnatmbers, but we stated
a much more general lemma, which in general is incorrect, and this was dunréeat we could not prove it.

The type for natural numbersiat , and we can correct the lemma as follows

lemma two _two: "(2::nat)+2=4" apply auto

Notice that we need to specify the type only once, and Isabelle automaticdkysiands that the second
2 and the 4 are also natural numbers. Now, if we execute the lemma formuiatstiows the correct goal
2+2=4,' and after executingpply auto we get a messagdo subgoals! which means that the proof is
finished, and we can either tydene or replaceapply with by, finally getting

INow no types are indicated in the g@al=4. The type-related error described above is very typical when woikitgabelle, so
if you have error and do not know what is the reason, choose Isabélettings> Show types in the menu, and try to execute again.
Now you will see all the types in the response buffer, in particular, in agegcthe goal will b€::nat)+(2::nat)=(4::nat)

3

lemma two _two: "(2:nat)+2=4" by auto

Now, we can writeend at the end of file, and save the file choosing EHléSave as. There is a special
condition that theory name is the same as file name, so we should save oyntithorame "MyFirst.thy”.

21 Summary

e Mathematical knowledge formalized by Isabelle consists of theory files *thigh form a theory hier-
archy by importing each other using the commampbrts . Syntax: each theory starts with keyword
theory followed by theory name, the commaimports , thenbegin , followed by the body of the
theory, ending witrend.

e The body of a theory is a collection of definitions, lemmas and theorems. EBmma consists of its
statement and proof. Syntax: keywdechma, then lemma name, then then the lemma’s statement in
quotes, then the proof.

e The proof may look likeapply(<method -1>) ... apply(<method _-n>) done . As we incremen-
tally execute such a proof we can see what is left to prove in the resporfifge. Syntax: the last
expressiorapply(<method _n>) done’ can be replaced byy(<method -n>).

e auto is a method which tries to prove the statement automatically.

e Every constant or variable in Isabelle has a typat is the type used for natural numbers (syntax
example:(2::nat)). We can use Isabelle Settings> Show types in the menu to see all the types in
the response buffer.

3 Main Notations

Now, let us have a closer look at lemmas in Fun.thy to learn the main notationsieétiedle language. Let us
start with the first lemma exparfdn_eq:

lemma expand fun eq: " f=g<+ (WX fx=gx)"

First of all, you can see that the lemma’s statement uses some mathematical syhibblgou cannot see
on your keyboard. You can type such symbols using the Math menu, lmtltwmot say that this is convenient.
In the appendix of the tutorial there is a very useful table which shows dlyeewvrite most symbols using the
keyboard in natural way. For example, the arrew can be written as==>, or even\ <Longrightarrow >.
Notations like==>, which is called ASCII notation, are more convenient, and will be used inesteof the
primer. If menu option Proof-General Options> Unicode Tokens is turned on=>" will be automatically
transformed to 2=" each time you type if. You will get used to such notation very quickly and it will be
absolutely no problem to understand mathematical text in this form. | wouldm@end to print the table with
ASCII notation from the tutorial appendix now, and have it available until get used to it.

In this notation« is written as<- >, V is denoted\LL. So, the lemma expanfdin_eq can be written as

lemma expand _fun _eq: "f=g <-> (ALL x. fx =g x)"

Now all the symbols are present on the keyboard and it is easy to type this lemiftae meaning of the
lemma is obvious: two functions f and g are equal if and only () = g(x) for every argumenk. Notice
that f (x) can be written without parenthesis. More complicated expressions wittidnacan also be written

2This is your choice, but | personally prefer to see on the screen exalotly| typed, therefore | usually turn off Unicode Tokens
in the menu, and just use ASCII notations

without parenthesis, but you should be careful here: for examppeessiornf t u meandf t) u (and not
f (t u)), and this expression can be used to denote a function of two variatigs &lso, you should know
the priorities of different operations: expression f x + y means (f x) ag aot f(x+y); equality has a high
priority andA & B = B & A(symbol & means "and”) mears & (B=B) & A, not(A & B) = (B & A).
In general, the priorities of the main logical binary connectives in detrgasder are &, ("or”), -- >, and
they are associative to the rigiit:-- > B -- > CmeansA -- > (B -- > C). You can find all these and many
more rules and examples of this kind in the Isabelle tutorial, but | would recowhiy@um to use parenthesis
when you are not sure. If youwrifd & B) = (B & A) this clearly indicates what you mean, and moreover
looks nice.

Let us return to the lemma’s statement. The phrase "for all x, we havegi(x)=is written asALL x. f x
= g x, where the full stop.”” replaces "we have”. Full stop is always used after any quantifierpatih we
can writeALL X y z. x+(y+z)=(x+y)+z instead OfALL x. ALL y. ALL z. x+(y+z)=(x+y)+z . Another
important use of full stop is in function definitions. For example, to definetfan f (x) = x+ 1 we can write
f=(%x. x+1) . Itis important to always leave a space after the full stop, or expresBi@ALL x.x or %x.x
will be understood incorrectly. Moreover, to be safe, | would recommeadng a space after every special
character. For example, the existential quantifiedenoted as? should be followed by a space x” because
the expression?x” has a completely different meaning. It is used $onematic variables, or free variables,
which can be instantiated arbitrarily. For example, the mathematical theereis represented in Isabelle as
?x=?x , which means that you can instantiate this variable to any term of the given type

Now we understand all of the notation in the statement of the lemma exXpanel], so let us move to the
next lemma in the Fun.thy theory, the lemma apiplyerse, which in ASCII notation takes the form

lemma apply _inverse:
fx=u- >ALLX Px- >g(fx))=x- >Px->x=gu

This formulation is a little bit less intuitive. Expressi®nx here can be understood as a predicate, i.e.
for every x expressiorP x is either true or false. Formally, this can be a function with Boolean values, or
equivalently just a set, and in this case the notafioxis equivalent toc:P , which is the ASCII abbreviation
for xeP. In Isabelle there is a specifoe constructor, calledset , which can be used to define relevant types:
for example, any set of natural numbers has the tgbeset . To define a set explicitly, we can use notation
of the form "{x. x is such that.}”, or even of the form {f(x,y) | X y. x and y are such that}’. For example,
stringsP:nat set andP = {x. x >10} define the set of all natural numbers greater than 10.

Now all the symbols are understandable, but it may still be not obvious hosatbthis lemma, which has
the form of a long logical formula. The point is that expressior > B -- > Cis logically equivalent t¢A
& B) —— > C, and the same is true for longer expressions. Thus, lemmas with assuntjoRs ..., A,
which provesB can be written agy — — > Ao — — > ... — — > A, — — > B. Now we can easily read the above
lemma as follows: assume that (1) f(x)=u, (2) for every P we have g(f(x))=x, and (3} € P. Then g(u)=x.
Now we can see that lemma is obvious, and it is not a surprise that it is paotedhatically.

After two auxiliary lemmas, theory Fun.thy contains some definitions, the firghath looks like

definition id = "'a = 'a" where "id = (Ax. X)"

This defines an identity function f(x)=x where x is a variable of any typeACSII notation=- becomes
=> andA becomes %. We can see, that the keywdzfahition is followed by the name of an object we want
to define, then after we indicate the type of this object, and then aftkere we list the defining equation of
this object. We already know that arbitrary type is denotethythus the function froma to’'a has a typéa
=> 'a % Then, aftewhere we specify that id(x)=x by writingd = (%x. X) .

SRecommended ASCII notation dfis EX
4Please notice that implication is denoted-as>, and the function type generator-is>, with a single equality sign.

Let us use this example to construct our own definition, for example, toedafifunction from real to
real, which is nondecreasing on some interval S. First, we need to tenugthat this is actually a Boolean
functional, which for every function f and set S will have value "True"Balse”. The Boolean type in Isabelle
is one of the base types and is denotedidn} . The formal definition of real numbers is somewhat complicated,
so we will not discuss it here, but the corresponding type is cadidd. Now S has the typeeal set ,f has
the type(real = > real) , so the type of our functional will beal set = > (real = > real) = > bool .

Let us give it the namaondecreasing _on. Now, nondecreasing _on(S,f) has a value "True” if and only
if for all x,y € Ssuch thatx <y we havef(x) < f(y). We already know all the necessary notation from the
previous examples, and can write this as

definition nondecreasing on : ‘real set = > (real = > real) = > bool"
where "nondecreasing on S f <-> (ALL x:S. ALL y:'S. x <=y - > fx <=fy)

However, if we try to execute this definition, we will obtain an errdndeclared type constructor:

"real" At command "definition" . The obvious guess after such an error would be that the type of real
number is not denote@al in Isabelle. To check this, we can go to the directory with Isabelle’s theley fi
(the folder you installed Isabelle in), thensrc > HOL, and look for the corresponding theory. Fortunately,
this is easy in this case, because there is a theory with name RealDef.thy,isvblm¥iously what we want.

If we look inside this theory, we will see that the type name is indead . Usually, if you see a defini-
tion or lemma in some theory, you can use it. Then if the system does not izeagrit may be that you
did not import the corresponding theory. Indeed it turns out that neallbers are not included by Main.thy,
and one option is to add RealDef.thyitoports command at the beginning of your theory. But, to avoid
similar problems with a next lemma, it is desirable to import the "latest” theory, adetimy as much of
the library as possible. However, | cannot tell you the name of such aytlomse and for all, because the
library is growing continuously. The current theory dependenciephgcan be found on Isabelle website:
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/library/HOL/index.html. For ledws replacemports

Main by imports Complex _Main: theory ComplexMain.thy imports Main.thy together with many more the-
ories containing, for example, all the basic properties of real and complabers. The definition can now be
executed.

As you can see, reading just a few lemmas and one definition from a randbosggn theory, Fun.thy, gives
us enough notation to create our own nontrivial definitions. If we lookiatttieory further, we will be able to
guess the meaning of almost all new mathematical notation in Isabelle. For examplef the next lemmas
isimage _ident stating tha{ %x. x) ' Y = Y . We can guess that it states that image of the set Y under the
identity function will be Y, whence symbolis an important notation of thienage of a set under a functiori (

* X is by definition the sefy. EX x:X. y = f x }). Looking at the next few lemmas we can see thais

a notation forinverse image, and the next definition introduces a useful notation for functiamposition f o

g which means function "f(g(.))”, or, in Isabelle notatioffox. f (g x)) . All the important functions and
notations inMain.thy are listed in [3]. But it is impossible to learn all the notation at once. We nowkno
more than enough to start proving theorems, and will learn more notation imabegs.

3.1 Summary

¢ All the main mathematical symbols also have ASCII notation, as a way to type therkeyboard. For
example— is==>, — IS —— >, &> is <- >, VIS ALL, JisEX < is <=, x:P is ASCII abbreviation
for xeP, the symbol & means "and”; the symbjineans "or”.

e Equality has a high priority; the priorities of the main logical binary connestinalecreasing order are
&, |, —— >, and they associate to the right. Use parentheses when you are not sure

e bool is the type for Boolean variableset is the type constructor for sets, for exampée set is the
set of natural numbers. Function types may be constructed asinfpr examplenat = > bool . Many
standard types are defined in Isabelle, for exargale is the type of real numbers.

e Full stop is used (1) with quantifiers, lik&LL x. f(x)=g(x) ; (2) to define functions, for example
f=(%x. x+1) ;and (3) to define sets, eB. = {x. x >10}. In every case, a space should follow imme-
diately after the full stop.

e The symbol is a notation of the image of a set under a functioh X is by definition sefy. EX x:X.
y = f x }). Notationf 0o g means function composition f(g(.)).

e All the important functions and notationslifain.thy are listed in [3].

4 Automatic Proofs

The most important skill in proving mathematical theorems in Isabelle is the abilityoiee @imple lemmas
with almost no effort. Every arbitrarily long proof can be representealcsin of simple steps, and this repre-
sentation is an interesting and fully mathematical task. But proving every simplensigbe a bit problematic
for new Isabelle users, as we saw on the example of lemma "2+2=4".

One of the main problems here is that the user often does not know whaetrrelemmas exist in the library.
If you want to prove some result from a particular area of mathematics sefsiLto look at the existing theories
in this area before start. However, Isabelle also provides us with $evaya to search through the library.

Given that we want to prove some lemma in Isabelle, the first question is whatdfly such lemma already
exists in the library and we just did not know about it? For example, assurme¢hdo not know the lemma
id _apply in Fun.thy, stating thatl x = x , and want to prove exactly the same lemma with nappdy _id
(recall that the functioid is defined inFun.thy , and it is the identity function).

lemma apply _id: "id x = X"
If we execute this lemma statement, we see the following message in the respfiese b

The current goal could be solved directly with:
Fun.id _apply: id ?x = ?x

This important mechanism of lemma suggestions can prevent you fromviegn@sults which already
exist in the library. If such a message does not appear, you may béhstiggour result is newv The search
tries to look on themeaning of the lemma, not just symbol-by-symbol coincidence, for example if yongha
the name of the variable and write:

lemma apply _id: "idy = y"

Isabelle will still suggest you use lemrita_apply to solve the goal directly. To use an existing lemma in your
proof you can use thesing command and write:

lemma apply -id: "id y = y" using id _apply by auto

and the lemma will be proved. But, clearly, proving this lemma again has no:seyse wanted to prove some
lemma and the system found this lemma in the library, it is better just delete your lentmseathe existing
one. Notice that we can use it just by lemma name, itikepply , writing the full name likeFun.id _apply

5At least in theories that you have imported.

is possible but unnecessary, and moreover will make your theory Umstaltan stop working in the future
versions of Isabelle if the library is reorganized.

Unfortunately, the lemma suggestion mechanism is currently very sensiti@itdgmma’s formulation.
In particular, Isabelle regards equations as directed, and if we write

lemma apply _id: "x = id x"

no lemma is suggested. This statement is actually a combination of two lemmagplidand the fact that
"a=b” is equivalent to "b=a”. Fortunately, there is a tool in Isabelle, chBéedgehammer, which tries existing
lemmas to automatically prove your goal. After executing the formulation of yoamia, choose Isabelte
Commands> Sledgehammer in the menu, and you will see the message

Try this command: apply (metis id _apply)

which suggest to apply lemma_ &pply to solve our lemma. If we click at this command in the response buffer,
it will be added to the proof, and we get messggg: No subgoals! . So the proofis finished, we can write
done to get

lemma apply _id: "x = id x" apply (metis id _apply) done

Method metis , similar toauto , tries to prove the statement automatically. The difference is that metis
uses only logical reasoning, but it is very strong in proving logical statésnelo prove the correct logical
formula, it is often enough to writepply metis . To prove that our statement is a logical consequence of
some lemma, we need to write@ply(metis <lemma_name>), in our caseapply (metis id _apply) . If
we want to prove corollary from several lemmas we should write all of themeftampleapply (metis
id _apply two _two) . But the point is that we wrote the proof above using sledgehammer haviltga about
metis, and (theoretically) without knowledge that the relevant lemmapioly” already exists in the library.

Sometimes sledgehammer needs some time to find a proof, but it can work in ¥ggdua, and you
can continue to work on your proof in parallel. Sometimes, it gives back aagesthat it cannot find a
proof. This may indicate that your lemma is nontrivial and new, which woulthbédeal case. Unfortunately,
sledgehammer is not always helpful even in simple cases, especially if lemro®iguantifiers. For example,
if we formulate the lemma

lemma expand: "h =t <-> (ALLYy. hy=1ty)

which is just a reformulation of lemmexpand _fun _eq in Fun.thy , the lemma suggestion mechanism imme-
diately tells you that

The current goal could be solved directly with:
Fun.expand _fun eq: (?f = ?g) = (ALL x. ?2f x = 29 X)

But now, ifyoureplacén y =ty byty = hy andwrite
lemma expand: "h =t <-> (ALLy. ty =hy)

no lemma is suggested automatically, and sledgehammer also gives the ntesagle prover failed

For this reasons it is desirable to formulate all your lemmas in the most natuyamithout unnecessary
changes of order in equalities, etc. Hopefully, the lemma suggestion methand sledgehammer will be
significantly improved in future versions of Isabelle, and all the resultsateatrivial consequences from the
existing ones will be proved automatically, without any effort from the.user

41 Summary

e When we execute the formulation of a lemma, we may get the me$tageurrent goal could be
solved directly with:... which implies that this lemma is not new but is just an instance of an
existing result in the Library.

e Sledgehammer is a mechanism which tries to combine two or more existing lemmasedhpEaoal.
After executing the formulation of your lemma, choose Isabell€ommands> Sledgehammer in the
menu, and, if successful, you will see the messageTlikethis command:

e To use an existing lemma in your proof you can usaidirgg command and writesing <lemma_name>
apply(<method >) .

e The proof methodnetis , similarly toauto , tries to prove statements automatically. It is very good at
proving logical statements.

5 Interactive Proof

In this section, we start writing proofs, which Isabelle cannot do compleigigmatically. Let us start from a
simple example: suppose we want to prove a simple formula from schookalgal- b)? = a2 + 2ab + b?.

First, we should formulate the lemma carefully. We know from the exa@#2e4 that the type of variables
should be specified explicitly. Furthermore, we cannot omit the multiplication siytnand writeab, because
Isabelle will understand this as a new variable. With this in mind, it is easy to fatethe lemma:

lemma sum_square: "(at+b)2=a"2+(2:.real)*a*b+b"2"

If we execute this lemma statement, no suggestion appears in the respdiese Blddgehammer also
cannot help here (messaberrupted (reached timeout) appears), so we need to prove the lemma by
hand.

So far, we know only two automatic proof methaago andmetis . To prove the lemma above, we will
need a third onesimp . This method is a powerful simplifier, which tries to simplify your expressiangis
hundreds of lemmas and simplification rules. Actually, the leridmapply from Fun.thy , considered above,
is formulated as follows:

lemma id _apply [simp]: "id x = x" by (simp add: id _def)

The attributgsimp] after lemma formulation states that this lemma will be automatically added to those
ones which thesimp method will use. Namely, iimp finds expression liked <expression >, it will
simplify it and rewrite as juskexpression > using this lemma. Your can easily use {eiep] attribute to
add any of your lemmas to those which are useditop . But this should be done very carefully: if you add
lemma likea+b=b+a, simp may use it again and again, working forever. It is recommended to addiurdg
lemmas which really simplify expressions, in the sense that the right-hand sidegker that the left-hand
side. If you want the simplifier to use some other lemma(s) in a particular casean use thedd command.
For example, expressidly (simp add: id _def) inthe example above proves lemidaapply by the simp
method, which uses all the lemmas with fkiep] attribute plus the definition of the identity functiah _def .

In general, if we write any definition in Isabelle, the corresponding lemma wiifixs def is automatically
created, and we can use this lemma in future proofs by writing commandsylikemp add: id _def) or
using id _def by auto

There are many lemmas which are not addesihip by default, but which are very useful in some particular
cases. For example, to simplify expressions involving addition and multiplicatiorm(ore generally, any

group, ring, or field equalities), it is useful to adidebra _simps to the simplifier by writingapply (simp
add: algebra _simps) .

Let us return to proving our lemnsim_square . It involves addition and multiplication, but immediately
writing apply (simp add: algebra _simps) fails to prove the lemma, because it involves also operation of
power. First, we should explain to Isabelle, th& means*a and so on. This fact is so simple, that it should
be in the library for sure, but how to find it? One way is to use the lemma suggesgohanism and write
somewhere above

lemma "a"2=(a::real)*a"
execute this, and the system will suggest you that

The current goal could be solved directly with:
Nat _Numeral.monoid _mult _class.power2 _eq_square: ?a2 = ?a * ?a

Sometimes, however, it is hard to guess the exact lemma formulation. In thiy@asan use Proof-
General> Find Theorems item in the menu, where you can search for theoremsysasne, writingname:
<name_to _find > in the string below. For example, in our case, we can guess to searamfar square and
find all the lemmas containirgguare in the name. In this case we will get the following message:

found 57 theorems (40 displayed) in 0.146 secs:

This message indicates that not all found lemmas are displayed. We can tiedsigarch and state explicitly
how many lemmas we want to be displayed: if we search(f@®) name: square , now all the lemmas
containingsquare in the name are displayed, including the relevamter2 _eq_square lemma.

If we cannot guess part of lemma’s name, we can also search forffiarfiaymulation. For example, to find
all the lemmas containing product of some number by itself we can (aftericigg@sofGeneral- Find Theo-
rems item in the menu) search f@a*?a" , and now 44 theorems are found, including power2 _eq_square
lemma. If too many lemmas are found, we can combine these approaches: feeaame: square "?a*?a"
result in just 20 lemmas which have both "square” in the name and exprdgsida*a” in the formulation.
Another relevant attempt is the quéfp™2" "?a*?a” which searches for lemmas containing both these ex-
pressions at the same time: now only three lemmas are found.

After finding lemmapower2 _eq_square , we are almost done. First, tell the simplifier to transform squares
to multiplication by writingapply (simp add: power2 _eq_square)

lemma sum_square: "(a+h)2=a"2+(2::real)*a*b+b"2"
apply (simp add: power2 _eq_square)

After executing this, we can see the following in the response buffer:
goal (1 subgoal): 1. (a+hb)*(@a+b)=a*a+2*a*b+b*b

This means that, after simplification, it is left to prove the statement above. Nosed only addition
and multiplication, we can writ@pply (simp add:algebra _simps) , execute to see messageal: No
subgoals! , and finish the proof by commanidne . The resulting proof looks like

lemma sum_square: "(ath)2=a"2+(2::real)*a*b+b"2"
apply (simp add: power2 _eq_square)
apply (simp add: algebra _simps)

done

10

The resulting proof is calletbackward proof. At every step we apply the relevant method to simplify
the goal, and see what is left to prove in the response buffer. But,thestiesulting proof script is hard to
understand: after reading the long sequencapply commands which proves hard theorem, it is hard to say
what was the main idea of the proof. Second, most of the proofs in mathehpateas rarely use the argument
"it is left to prove that”. The typical proof usually looks like "From definitiare have Statement 1. Also, from
well-known lemma it follows Statement 2. Now, from these 2 statements we cafuderStatement 3, and the
proof follows”. This is calledforward proof, or declarative proof, and it is also supported in Isabelle. Let us
use the lemma above to prove that- 6x+ 9 > 0.

lemma expression _nonneg: "X "2+(6::real)*x+9 >= 0"

As a first step of proof, we want to say thét+ 6x+9 = (x+ 3)2. For Isabelle, this will be a sublemma
inside the proof of our lemma. To formulate such a sublemma, comirevedis used, and to indicate that we
are inside the proof of lemnmexpression _nonneg , we should writeproof- beforehave :

lemma expression _nonneg: "X"2+(6::real)*x+9 >= 0"
proof-
have aux: "X2+(6::real)*x+9 = (x+3)°2"

Hereaux is the name of the sublemma which will be used for future references. Te pings, we need
to substitutex and3 into the lemmasum_square . This can be done using the attribwffe which has format
<lemma_name> [of <varl > <var2 > ... <varn >]:

have aux: "x"2+(6:real)*x+9 = (x+3)"2" using sum _square [of x 3] by auto

Now we need to find a lemma stating that full square is nonnegative. It is Idgiessume that such a
lemma hasquare as a part of name. To find it, go to ProofGenesaFind Theorems in the menu,then write
name. square , and in resulting list we can see the lemma we need:

Rings.linordered _ring _strict _class.zero _le _square: (0::?'a) <="7a* ?
In our case variabl@a should bex+ 3. To see the result of the substitution we cantisecommand
thm zero _le _square [of "x+3"]

Please notice that expressions i@ should be in quotes when used aftér Executing the string above, we
can see in the response buffer

0 <=(x+3 *(x+3
as expected. So we can write
have "(x+3)2 >= 0" using zero _le _square [of "x+3"] by auto

and the auxiliarfhm command can now be erased.

Alternatively, we can try to use Sledgehammer to prove any of our subgiféds executing the expression
after have, we can choose Isabellé€ommands> Sledgehammer in the menu, and for the statertxefij 2
>= 0 it works: you can see the message

Try this command: apply (metis zero _le _power2)

which also finishes the proof of the statement immediately.

Now we want to say that the lemma expressimmneg follows from these two statements. The first one
has nameawux, and the last one can be referred using keywdms this . The phrase "and lemma follows”
in Isabelle language looks likshow ?thesis , and we can write:

11

from this show ?thesis using aux by auto

After executing we see that the proof is correct, and then the declaptioé should be finished by the
commandjed. The resulting proof looks like:

lemma expression _nonneg: "X "2+(6::real)*x+9 >= 0"
proof-
have aux: "X2+(6:real)*x+9 = (x+3)"2" using sum _square [of x 3] by auto

have "(x+3)"2 >= 0" using zero _le _square [of "x+3"] by auto
from this show ?thesis using aux by auto
ged

In contrast to the backward proof of lemma sisiuare, this proof is clear for the reader. For readability
of large proofs, it is important to indent the proof text betwpamnf- andged. Moreover, you can improve
the language of the proof by replacifigm this by then , from this have by then have orhence, from
this show by thus , etc. However, backward proof can sometimes be easier to write: yofojustilate the
goal and see how far the appropriate automated method can proceeday®e the best strategy would be to
combine forward and backward proof methods. For example, you mégr ppoestate some major sublemmas
in your proof usinghave and then prove these sublemmas by the backward strategyapgigg.

Sometimes it is convenient to exchange the order of proving sublemmas iwardoproof. For example,
if the proof of statement B has the forhave A hence B, we may prefer first to prove the second state-
ment (namely, that A implies B) and then return to proving A. Isabelle prowdeswith this opportunity
with the help ofsorry command, which "proves” everything. For example, if we would like to use lemma
expression _nonneg first, and then return to proving it, we could temporary "prove” it in one line:

lemma expression _nonneg: "X"2+(6:real)*x+9 >= 0" sorry

However,sorry command should be used with care, because you can "prove” a falseatéateith it, and
then build your proof based on this statement.

51 Summary

e Methodsimp is a simplification method which tries to simplify the goal automatically. It uses all the
lemmas in the library marked with tHeimp] attribute. To makesimp also use another lemma, we
should add it explicitly, by writingapply(simp add: <lemma_name>) . For exampleapply (simp
add: algebra _simps) is useful to simplify expressions involving addition and multiplication.

e If you can guess a part of the name of the lemma you want to use, chamf&Bneral> Find Theorems
item in the menu, and then wribame: <name_to _find > in the string below. You can also indicate how
many found lemmas to display: for example search(f60) name: square will result in up to 100
lemmas with "square” as a part of the name.

e Similarly, if you can guess a part of the lemma statement, choose ProofGenEnad Theorems, and
then search for any expression, or several expressions, usiegatic variables. For example, search
for "?2b"2" "?a*?a" will result in the list of lemmas containing both a square and a product of a term
with itself.

e There are two main strategies in proving results. Proof in the fppty(<method _1>) ... apply
(<method _n>) done is called backward proof. Alternatively, you can use the forward gyatéhich
looks like proof- have <statement 1> .. have <statement _n> ged, where the statements
after have should, in turn, be proved using backward or forward strategies, @ernthaps, the earlier
proved statements. Also, at every step you can use Sledgehammer to wyedhpr statement automat-
ically.

12

To substitute particular values for the variables in an earlier proved lemmaaarouse the attribute |
for example..using sum _square [of x 3] by auto

To use the last proven fact you can wiitem this have , orthen have , orhence.

At the end of forward proof, you should wrighow ?thesis , finish the proof, and then writged.

To exchange the order of reasoning in a forward proof, you can tearijyotprove” any statement or
lemma with commandorry .

6 Assumptionsand Local Variables

In a usual human proof, the same variables and notations are used te,d#rictly speaking, different objects,
and in this section we explain how this works in Isabelle. For example, letits dawn the proof of a simple
well-known result, that poirnk in metric space belongs to the intefiaf setSif and only if S contains a ball
with centerx.

Proof: If x belongs to interiofS, then, by definitionx belongs to some open sub3etf S. BecauseT is
open, it contains a baB with centerx, and we havd8 C T C S. Vice versa, ifScontains a ball with cente,
this ball is an open subset 8fwhich contain, hence, by definitionx belongs to interiofs.

We can see that the proof consists of two parts, and in firstqaar@n arbitrary point belonging to interior
of S while in the second one we assume thatbntains a ball with cented’, and this creates no confusion.
Let us try to formalize the proof above.

First, we can find if the notion of interior is defined in Isabelle. If you impBomplex _Main only,
searching fomame: interior ~ _def or evenname: interior will show no results. Fortunately, basic no-
tions of topology was recently formalized in the context of a big project of waritite analysis formalization
in Isabelle. If you addmports Multivariate _Analysis 7 at the beginning of your theory, searching for
name: interior _def will lead you to the result:

interior ?S = {x. EXT.open T & xT & T <= 7S}

Similarly, search foname: ball _def will resultinball ?x ?e = {y. dist 2x y < ?e}, so we can
conclude thaball x e is the ball with center x and radius e. Now we can formulate the lemma.

lemma interior _ball: "x:interior S <-> (EXe 0 <e & (bal x e <= S§)"

There is no need to specify that x is an element of a metric space, and ealsnaimgber: Isabelle under-
stands this from stringall x e . If we execute this lemma formulation, we will see thiaé current goal
could be solved directly with: Topology _Euclidean _Space.mem_interior , i.e. that this lemma al-
ready exists in the library, but we will ignore this and prove it by hand.

The proof starts with the assumption #fbelongs to interiolS...”. In Isabelle, there is a corresponding
commandassume. To tell Isabelle which part of proof this assumption affects, we shouttbea it in braces
{}. The general way to prove the implicatidn-- > B is to write {assume A.. have B }. Also, we can
write several assumptiors, ..., A, to derive(A1& Ax& ...& A,) — — > B.

So, let us start the proof by writing

proof-
{ assume "x:interior S"

6By definition, interior ofSis the set of all points, such that there exists an open subs& which contains
7If you get an erroiCould not find theory file "Multivariate _Analysis.thy" in... , please go to the folder in which
you have installed Isabelle and execute the commaniti -m HOL-Multivariate _Analysis HOL

13

The next step is to define T such thxat T, T is open, and C S. This can be done by commanatgain
andwhere :

from this obtain T where T def: "open T & xT & T <= S" using interior _def by
auto

The line above does not just introduce a new notation T, but it provesstiat a T actually exists.
This fact follows directly By auto) from the assumptionfrom this) and the definition of interioruging
interior _def), and we gave it a nam@ (def) for future reference.

Next, we want to say that "Becau$eds open, it contains a bal with centerx’. The corresponding lemma
can be easily found, say, by searching for "name: ball” and it is calbed contains _ball . Thus, we can
write

hence "EX e. e >0 & bhall x e <= T" using open _contains _ball by auto

Here hence is the same afom this have , so we have proved this statement by auto using lemma
open _contains _ball and the previous line stating that T is open. Now we can use thé fact Sto conclude
thatball x e <= S, and then finish the first part of proof

hence "EX e. e >0 & bhall x e <= S" using T _def by auto
} note impl = this

All the statements inside the block are conditional with respect to the assuniptiettast statement before
closing parenthesis should not contain any local notation like T. Then we can close the block|satelle
automatically derives the unconditional statement of the form "assumptidast statement inside the block”,
which can be referred to usitigis . Commandhote impl = this gives ita namémpl for future references.

To prove the converse statement, we assumeShantains a ball with centes, denote ifT, and claim that
this T is exactly what we need to prove that interior S by definition.

{ assume "EX e. e >0 & ball xe <=§S"
from this obtain e where e _def: "e >0 & (ball x e) <= S" by auto
def T == "ball x e"
hence "open T & xT & T <= §"

From the assumption we "obtain” radies> O such thafball x e) <= S, and then just introduce a
notation T for (ball x) in commandkf . The syntax islef <name> == " <description ~ >". In contrast to
obtain , commandlef does not require any proof of existence. Now, to prove that T is openegd to find
the corresponding lemmapen _ball in the library, statemenl <= S follows from e_def , and the obvious
factx : T can be proved automatically. So, the rest of the proof is easy:

hence "open T & xT & T <= S" using open _ball e _def by auto
hence "x:interior S" using interior _def by auto

} from this show ?thesis using impl by auto

ged

The lastthis here refers to the fact that from assumptivhe. e >0 & ball x e <= Sthe last state-
ment of the block:interior S follows. This together witlimpl finishes the proof.

The proof of this lemma in Isabelle library is shorter, but this proof illustrates to use assumptions in
Isabelle, which will be very useful in other proofs. For example, theegdrmethod to prove that <- > B
is to derive B from A using formafassume A... have B }, and then derive B from A usinfpssume B...

14

have A}. Also, to prove that, say, two sets S and T are equal, the straightforvegrisyassume "x:S"...
have "x:T" } to derive(x:S) -- > (xT) , then prove the opposite statement to de(w&) -- > (x:S) ,
and finally use lemmaxpand _set _eq which states thaPA = ?B) = (ALL x. (x:?A) = (x:?B))
For example, our lemmiaterior ~ _ball can be used to obtain the following equivalent characterization of
the interior:

lemma interior _def2: ‘“interior S = {x. EXe. e >0 & (ball xe) <= S}"

For a proof, we need to use lemnngerior _ball for a particular S, but for arbitrary x. This can be done
using theof attribute in the following formatinterior _balljof ~ _ S]. To derive lemmanterior ~ _def2
from this statement, it is left to apply lemneapand _set _eq.

lemma interior _def2: “interior S = {x. EXe. e >0 & (ball xe) <=S}"
using interior _ball[of _ S] by (simp add: expand _set _eq)
6.1 Summary

e To use some additional assumption during the proof, one can use conassan. In this case, we
should enclose the block where this assumption applies in bfgce3he general way to prove the
implicationA -- > Bis to write {assume A.. have B }.

e Commandobtain <object _name> where <thm_name>: .. allows us to obtain an object with
a particular properties. To finish this command, we need to prove that suchject exists, and then
we can use this object asobject _name> during the proof (say, substitute it as a parameter after
attribute), referring to its properties as4thm _name>.

e Commanddef with formatdef <name> == " <description >" just introduces a notation and does
not require any proof of existence. We can refer to this definition usimgne> _def .

¢ All statements inside a block enclosed in bra¢gsire conditional with respect to assumptions, and all
variables defined inside such a block are local ones. No such vareblgacticipate in the last statement
of the block. We can use variables with the same names in different blocks.

e To prove that two sets S and T are equal, one can first provexBat <=> (x:T) , and then use
lemmaexpand _set _eq which states thg?A = ?B) = (ALL x. (x:?A) = (x:?B))

7 Introducing New Notations and Concepts

Convenient definitions and notation are crucial in proving mathematicdtsesor example, suppose we want
to prove, that for any convex sets A, B, C, the set

{x+y+z|xyz xA & yB & zC}

is also convex. Search in Isabelle (for examplenbye: convex , provided that you import theory Convex)
results in lemmaonvex _sums stating that for two convex sets Aand B det+ y [x y. xA & yB}is
convex. Now it is natural to define suftB of two sets, and then argue that for convex sets A, B, CAs&t
and whencé+B+C = (A+B)+C is convex by lemmaonvex _sums.

Now, how to introduce new notation? As usual, you can read the tutorialt lsueasier to look at the
existing theories. For example, our favorite theBuy.thy introduces a notation for function composition

15

definition
comp > "(b= >'¢)=>(a=>"'h)=>(a=>"'c) (nfixl "0" 55)
where "f o g == (%x. f (g x)"

We see, that composition is actually a functoomp(f g) with two arguments: fof typéb = > ’c) and
g of type(a = > 'b) , which returns the result of typé&@ = > 'c) . String(infixl "0" 55) introduces
notationf o g for this function. Using this example, we can try to define sum of two sets:oitldhbe a
function likeset _add(A B) , where A and B are sets with elements of the same type, and we want a notation,
say,A +s B

definition set _add 1 "Ma set => 'a set => 'a set" (infixl "+s" 55)
where "A +s B == {x +y [x y. xA & yB}"

But, if we try to execute this definition, we get an error

Type unification failed: Variable 'a:type not of sort plus

This is quite common error in Isabelle, stating that the types are not appgeofwa@ of correct "sort”) for
this context. For example, in our case Isabelle tells us that addition can wieffibed for arbitrary sets, and
elements of our sets should have a type with a speciapksrt. To correct this error, we can easily specify
sort explicitly

definition set _add :: "(a:plus) set => 'a set => 'a set" (infixl "+s" 55)
where '"A +s B == {x +y [xy. xA & yB}"

and now the definition executes corre8tly

Next, let us formulate and prove lemma about sum of two convex sets in theatation. As usual, to learn
the corresponding syntax, let us first look at the statement and begiohthg proof of the existing lemma
convex _sums in theoryConvex.thy

lemma convex _sums:
assumes "convex s" "convex t"
shows "convex {x + Yy |xy. xS & yt }"
using assms unfolding convex _def image _iff
proof- ...

We can see, that assumptions of the lemma can be formulated after kegssomks, and then we can
refer to them during the proof by writingsing assms . The statement of the lemma in this case follows the
keywordshows. Let us formulate the corresponding lemma with notatie .

lemma convex _sums2:
assumes "convex A" "convex B"
shows "convex (A +s B)"

Since itis just a reformulation of lemneanvex _sums, itis natural to try to prove this lemma automatically,
using the existing lemma, assumptions, and definitior&f . However, an attempt

81t may be confusing that we still do not understand the meaning of ginifag "+s" 55) . Actually, now it is easy to use the
Tutorial’s Index to findnfixl ~ there, and read thatfixi ~means that operation is associative to the left, Ehohdicates the priority
of the operation

16

using set _add_def assms convex _sums by auto

does not work, so more details are required. One way is to tell Isabelle#ot garameters to substitute in
set _add _def , namely

using set _add_deflof A B] assms convex _sums by auto

Alternatively, we can proceed by analogy with the proof of lentoreex _sums above, and usanfolding
command:

lemma convex _sums2:
assumes "convex A" "convex B"
shows "convex (A +s B)"
unfolding set _add _def using assms convex _sums by auto

After executing the statement of the lemma we can see gmakx (A +s B) . Then, after executing
unfolding set _add_def the remaining goalisonvex {x +y [x y. XA & y:B },i.e. thiscommand "un-
folded” the definition. Next we can execuieing assms convex _sums by auto and the proof is success-
fully finished.

Now we can prove the initial lemma

lemma convex _sums3:
assumes "convex A" "convex B" "convex C"
shows "convex {x +y+z|xyz xA & yB & zC}"

First, we want to claim that the set in question is exaatlys B +s Cin the new notation.

proof-
have " {x +y + z Xy z. XA & yB & zC} = (A +s B +s C)"
unfolding set _add _def by auto

Then we can claim that sét +s B +s C is convex, prove this usingonvex _sum2, and the lemma will
follow from these two statements. To tell Isabelle that one statement followsdeeeral previous ones, we
can usamoreover andultimately ~ commands:

moreover have "convex (A +s B +s C)" using convex _sum2 assms by auto
ultimately show ?thesis by auto ged

In this case, convenient notation for sum of sets helped us prove tivedlessult easily. However, you
should be very careful when introducing new definitions and notatioraimelée. The problem is that notation
for many natural concepts already exists somewhere in Isabelle, buftiéisrmntrivial to find it. Introducing
several different notations for the same concept will often result ifkgonork in theorem proving. For exam-
ple, in our case, definition of sum of two sets really exists in Isabelle libiratlyeorySetsAndFunctions.thy
but the formulation is slightly different

definition
set _plus :: "(a:plus) set = > 'a set = > 'a set'(infixl " @" 65)
where '"A @ B == {c. EX aA. EXbB.c=a+b }"

17

and it is nontrivial to find it therd. For this reason, it helps to spend some time to look through the library
to be aware of what concepts it offers. You can also ask the Isabelle ghédin if you are going to in-
troduce some important concept and do not see it in the library. In deyera are welcome to ask this
mailing list all kinds of questions, somebody will answer you soon and in det¥dsi can subscribe to it

at http://www.cl.cam.ac.uk/research/hvg/Isabelle/community.html. At the same pagejdta useful link to
Isabelle FAQ, and also links to various materials (slides, demos, and esjrfos learning Isabelle.

7.1 Summary

e Types in Isabelle haveort , which tells us some properties of this type. For example, addition is defined
for types of sortplus . Syntax example(a:plus) set is a set of arbitrary elements, for which
addition is defined.

e Assumptions of a lemma can be formulated after keyvessdmes, and then we can refer to them in the
proof by writingusing assms . The statement of the lemma in this case follows the keywboas .

e Commandunfolding with formatunfolding <lemma_name>, where<lemma_name> is often a defi-
nition, tries to "unfold” symbol or term in the goal usirgemma_name>.

e Isabelle mailing list is the place where you can ask any questions aboetlésaldou can subscribe at
http://www.cl.cam.ac.uk/research/hvg/Isabelle/community.html

8 Summary

This Primer is aimed for mathematicians, who want to start working with IsabelkehdVe discussed only
a tiny portion of Isabelle here, but it is enough to start formalization of samgle mathematical results.
We have tried to concentrate on topics, which are especially useful fegiarer: main notations, search in
Isabelle, sledgehammer, organization of blocks inside the proof, etee Myguortantly, we have tried not just
tell you "how it works”, but tell you how tdearn Isabelle, looking at the existing theories. Instead of providing
you with correct proofs immediately, we often start with intuitive, but incark@rsions, and describe how to
correct the resulting errors.

Obviously, you will often need some methods which are not described Herthis case, one general
strategy is to look at the existing theories formalizing the same area of mathenaaticsnaybe you will
find relevant methods there. Reading selected sections from Isabell@lt{thrwhich corresponds to your
particular formalization, is also useful. Proof by induction, as well as sother auseful proof methods,
is described very well in a short Isar tutorial [2]. Many basic typesictions, and notations are listed
in [3]. These and other useful documents are available at Documentaibiors of the Isabelle website
http://www.cl.cam.ac.uk/research/hvg/lsabelle/documentation.html. Finally, mamilesasers are ready to
help you, if you send your question to the Isabelle mailing list.

In conclusion, formalization of mathematics in Isabelle is a little bit difficult to starttybry exciting. After
some time, you become comfortable with Isabelle, and then enjoy provingviahtineorems to the strongest
opponent in the world, who would never overlook your error or niicisargument. And maybe, after some
time with Isabelle, you also begin to feel, that only formalized theorems are prallgd in mathematics. All
the other proofs are just proof outlines.

9Well, you can guess import Library, and then search for,"Say+ ?y" " {x. ?P x }", tofind all the expressions which contains
sum, and also defines a set in the form "set consists of all x such tkt &¢d in this case you would found 24 theorems including
SetsAndFunctions.set _plus _def . Butitis a nontrivial guess to perform such a search.

18

References

[1] Nipkow, T, Paulson, C., Wenzel, M., Isabelle/HOL: A proof Assistdat Higher-Order Logic,
http://www.cl.cam.ac.uk/research/ hvg/lsabelle/documentation.html

[2] Nipkow, T, A tutorial Introduction to Structured Isar Proofs, http://wwlcam.ac.uk/research/
hvg/lsabelle/documentation.html

[3] Nipkow, T, What's in Main, http://www.cl.cam.ac.uk/research/ hvg/Isabbétieumentation.html

19

