
Operator precedence cheat sheet for Isabelle/HOL (quick and dirty, little quality control, version 2012-
Nov-12). Follow-up of the discussion at the Isabelle mailing list in November 2012, https://lists.
cam.ac.uk/pipermail/cl-isabelle-users/2012-November/msg00020.html. Entries without a fixed
precedence are still rough guesstimates (that may need further correction).

Class Precedence Symbols and the minimum precedence
of symbols that may be contained in
non-terminals

function application of user-defined function,
field dereference (record)

function 900 (900 L 0 M (record update))
function 100 (100 nth (list) 101)
type “set” type constructor, “list” type con-

structor
function 70 (70 ∩ (set) 71), (70 * (nat) 71)
function 65 (65 ∪ (set) 66), (65 + (nat) 66), (65 −

(nat) 66), (66 # (list) 65), (66 @ (list)
65)

relation 50 (50 = 51), (50 ∈ 51), (51 < 51), (51 ≤
51)

logic 40 (¬ 40)
logic 35 (36 ∧ 35)
logic 30 (31 ∨ 30)
logic 25 (26 −→ 25), (26 ↔ 25)
logic 10 (∀ 0 . 10), (∃ 0 . 10), (if 0 then 0 else

10), (case 0 of 10), (let 0 in 10)
type 3 (4 :: 0)
logic 3 (λ 0 . 3)
metalogic 2 (3 ≡ 2)
metalogic 1 (2 =⇒ 1)
type 0 (1 ⇒ 0)
metalogic 0 (

∧
0 . 0)

Table 1: Higher symbols have higher precedence. Precedences given where known to me, by use of
the Isabelle command “print syntax” - you can issue this command for example anywhere in an empty
theory or an existing theory. “print syntax” also shows precedence for a lot of symbols not given in
the table for brevity (say, exponentiation of natural numbers). Following the convention of the out-
put of “print syntax”, associativity of binary operators is determined by that a non-terminal in the
right-hand side production rule of a grammar only may be expanded by non-terminals with the same
or higher precedence. Hence, for example addition on the natural numbers is left-associative, as its
production still allows expansion to the left of the “+” operator. Conversely, for example list con-
catenation is right-associative. “<” is not associative at all (no expansion allowed either way). See
also the post by Holger Gast for a more detailed explanation (https://lists.cam.ac.uk/pipermail/
cl-isabelle-users/2012-November/msg00032.html). Classes are my own interpretation.

Note on classes:

function if it is a function (type constructors “set”, “list” could also be seen as functions)

relation if it is a relation

logic if it is object logic

metalogic if it is meta logic

1

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-November/msg00020.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-November/msg00020.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-November/msg00032.html
https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-November/msg00032.html

