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Abstract—Higher-order logic (HOL) forms the basis of
several popular interactive theorem provers. These follow
the definitional approach, reducing high-level specifications to
logical primitives. This also applies to the support for datatype
definitions. However, the internal datatype construction used
in HOL4, HOL Light, and Isabelle/HOL is fundamentally
noncompositional, limiting its efficiency and flexibility, and it
does not cater for codatatypes.

We present a fully modular framework for constructing
(co)datatypes in HOL, with support for mixed mutual and
nested (co)recursion. Mixed (co)recursion enables type defini-
tions involving both datatypes and codatatypes, such as the
type of finitely branching trees of possibly infinite depth. Our
framework draws heavily from category theory. The key notion
is that of a rich type constructor—a functor satisfying specific
properties preserved by interesting categorical operations. Our
ideas are formalized in Isabelle and implemented as a new
definitional package, answering a long-standing user request.

Keywords-•—Category theory, higher-order logic, interactive
theorem proving, (co)datatypes, cardinals

I. INTRODUCTION

Higher-order logic (HOL, Sect. II) forms the basis of
several popular interactive theorem provers, notably HOL4
[9], HOL Light [15], and Isabelle/HOL [25]. Its straightfor-
ward semantics, which interprets types as sets (collections)
of elements, makes it an attractive choice for many computer
science and mathematical formalizations.

The theorem provers belonging to the HOL family tradi-
tionally encourage their users to adhere to the definitional
approach, whereby new types and constants are defined in
terms of existing constructs rather than introduced axiomat-
ically. Following the LCF philosophy [10], theorems can be
generated only within a small inference kernel, reducing the
amount of code that must be trusted. As a result, HOL-based
provers are widely considered trustworthy.

The definitional approach is a harsh taskmaster. At the
primitive level, a new type is defined by carving out an
isomorphic subset from an existing type. Higher-level mech-
anisms are also available, but behind the scenes they reduce
the user-supplied specification to primitive type definitions.

The most important high-level mechanism is undoubtedly
the datatype package, which automates the derivation of
(freely generated inductive) datatypes. Melham [23] devised
such a definitional package already two decades ago. His
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approach, considerably extended by Gunter [12], [13] and
simplified by Harrison [14], now lies at the heart of the
implementations in HOL4, HOL Light, and Isabelle/HOL.

Despite having withstood the test of time, the Melham–
Gunter approach suffers from a few limitations that impair
its usefulness. The most pressing issue is probably its igno-
rance of codatatypes (the coinductive pendant of datatypes).
Lacking a definitional package to automate the definition
of codatatypes, users face an unappealing choice between
tedious manual constructions and risky axiomatizations [8].

Creating a monolithic codatatype package to supplement
the datatype package is not an attractive prospect, because
many applications need to mix and match datatypes and
codatatypes, as in the following nested-(co)recursive speci-
fication of finitely branching trees of possibly infinite depth:

datatype α list = Nil | Cons α (α list)
codatatype α tree I = Node α ((α tree I) list)

Ideally, users should also be allowed to define (co)datatypes
with (co)recursion through well-behaved non-free type con-
structors, such as the finite set constructor fset:

codatatype α tree I = Node α ((α tree I) fset)

This paper presents a fully compositional framework
for defining datatypes and codatatypes in HOL, including
mutual and nested (co)recursion through an arbitrary com-
bination of datatypes, codatatypes, and other well-behaved
type constructors (Sect. III). The underlying mathematical
apparatus for specifying and structuring datatypes is taken
from category theory. From this perspective, our type con-
structors are functors satisfying specific semantic properties,
and we call them rich type constructors (RTCs). Unlike all
previous approaches implemented in HOL-based provers,
our framework imposes no syntactic restrictions on the type
constructors that can participate in nested (co)recursion.

The main mathematical contribution of this paper is a
novel class of functors—the RTCs—that is closed under the
initial algebra, final coalgebra, and composition operations
and that allows initial and final constructions in a sufficiently
“local” way (Sect. IV). Cardinality reasoning with canonical
membership-based well-orders lies beyond HOL’s expressive
power, so we need a theory of cardinals that circumvents
this limitation. Performing global categorical constructions
in a weak, “local” formalism arguably constitutes the logical
equivalent of walking on a tightrope.

We have formalized the development in Isabelle/HOL and



are proceeding to implement a fully automatic definitional
package for (co)datatypes based on these ideas to supplant
the existing datatype package (Sect. V).

II. HIGHER-ORDER LOGIC (HOL)

By HOL we mean classical higher-order logic with Hilbert
choice, the axiom of infinity, and ML-style polymorphism.
HOL is based on Church’s simple type theory [2], [7]. It
is the logic of Gordon’s original HOL system [9] and of
its many successors and emulators. To keep the discussion
focused on the relevant issues, we depart from tradition
and present HOL not as a formal system but rather as a
framework for expressing mathematics, much in the way
that set theory is employed by working mathematicians.

A. Basics

The standard semantics of HOL relies on a universe U of
types, ranged over by α, β, γ, which we view as nonempty
collections of elements. Membership of an element a in a
type α is written a : α. The type unit consists of a single
element written (), bool is the Boolean type, and nat is the
type of natural numbers. Fixed elements of types, such as
() : unit, are called constants. Given α and β, we can form
the type α→ β of (total) functions from α to β. If f : α→ β
and a : α, then f a : β is the result of applying f to a. The
types α+β and α×β are the disjoint sum and the product
of α and β, respectively. For functions taking n arguments,
we generally prefer the curried form f : α1→ ··· → αn→ β
to the tuple form f : (α1×·· ·×αn)→ β.

HOL supports a restrictive, simply typed flavor of set
theory. We write α set for the powertype of α, consisting
of sets of α elements; it is isomorphic to α→ bool. The
universe set of α, Uα : α set, is the set consisting of all the
elements of α. For notational convenience, we sometimes
write α instead of Uα. Given an element a : α and a set
A : α set, a ∈ A tests whether a belongs to A. Although
the two concepts are related, set membership is not to be
confused with type membership. Given a type α and a
predicate ϕ : α→ bool, we can form by comprehension the
set {a :α. ϕ a} of type α set. Russell’s paradox is avoided,
because elements of α set cannot be elements of α.

While unit, bool, and nat are types in their own right,
set, →, +, and × are type constructors, i.e., functions
on the universe of types. The first of these is unary, and
the last three are binary. Types are a special case of type
constructors, with arity 0. We can introduce new type
constructors by combining existing type constructors and
comprehension; for example, we can define the ternary type
constructor (α1, α2, α3) F as (α2 + α1)× (α3 set). Except
for infix operators, type constructor application is written in
postfix notation (e.g., α F), whereas function application is
written in prefix notation (e.g., f a).

Depending on the context, (α1, . . . , αn) F either denotes
the application of F to (α1, . . . , αn) or simply indicates that

F is an n-ary type constructor. We abbreviate (α1, . . . , αn) F
to α F. Given a binary type constructor (α1, α2) F and a fixed
type β, (_, β) F denotes the unary type constructor sending
an arbitrary type α to (α, β) F, and similarly for (β, _) F.

As the main primitive way of introducing custom types,
HOL lets us carve out from a type α the type corresponding
to a nonempty set comprehension A= {a :α. ϕ a}, yielding a
type β and an injective function f : β→ α whose image is A.

Where Church’s simple type theory only offers monomor-
phic types, HOL features ML-style (rank-1) polymorphism
and type inference. Polymorphic constants can be regarded
as families of constants indexed by types. For example,
the identity function id : α → α is defined for any type
α and corresponds to a family (idα)α∈U . Id : (α× α) set
is the identity relation. Function composition ◦ has type
(α → β) → (β → γ) → α → γ. Type arguments can be
indicated by a subscript (e.g., Uα) if needed.

B. Expressiveness
HOL is significantly weaker than the set theories popular

as foundations of mathematics, such as Zermelo–Fraenkel
with the axiom of choice (ZFC). Some standard mathe-
matical constructions cannot be performed in HOL, notably
those dealing with proper classes or families of unboundedly
large sets (not containable in any fixed set). A typical
example is the representation of the HOL semantics, which
is impossible in HOL due to the unbounded nature of the
simple type hierarchy. Another example is the standard
(membership-based) theory of ordinals and cardinals, which
involves the well-ordered class of ordinals.

Nonetheless, many standard mathematical constructions
are local, meaning that they are performed within an arbi-
trary but fixed universe set. These are particularly well suited
to (polymorphic) HOL. Examples include basic algebra and
analysis, formal language theory, and structural operational
semantics. Indeed, a large body of mathematics can be
expressed adequately in HOL, as witnessed by the extensive
library developments in HOL-based provers.

III. DATATYPES IN HOL
The limitations of HOL mentioned above may seem exotic

and contrived. Yet our application—datatype definitions—is
precisely one of those areas where HOL’s lack of expressive-
ness is most painfully felt. Category theory offers a powerful,
modular methodology for constructing (co)datatypes, but
filling the gap between theoretical category theory and
theorem proving in HOL, with its simply typed set theory,
is challenging; indeed, it is the main concern of this paper.

A. The Melham–Gunter Approach
Melham’s original datatype package [23] is based on

a manually defined polymorphic datatype of finite labeled
trees, from which simple datatypes are carved out as sub-
sets. Gunter [12] generalized the package to support mu-
tually recursive datatypes. She also showed how to reduce



specifications with nested recursion to mutually recursive
specifications. A typical example is the recursive occurrence
of α treeF nested in the list type constructor in the definition
of finite trees. To define such a type, Gunter unfolds the
definition of list, resulting in a mutually recursive definition
of trees (α treeF) and “lists-of-trees” (α treeF_list):

datatype α treeF = Node α (α treeF_list)
and α treeF_list = Nil | Cons (α treeF) (α treeF_list)

Exploiting an isomorphism, the package translates occur-
rences of α treeF_list to (α treeF) list, maintaining to a
large extent the illusion of nested recursion. Orthogonally,
Gunter [13] extended Melham’s labeled trees with infinite
branching, to support positive recursion through functions.

The handling of mutual and nested recursion has several
disadvantages, all related to its nonmodularity. Most impor-
tantly, it is not clear how to extend the approach to nested
recursion and corecursion or to non-free constructors. In
addition, some of the internal aspects of the construction
are visible to the user (e.g., in the type of the iterator used
to define primitive recursive function). Finally, replaying re-
cursive definitions and transferring results via isomorphisms
is prohibitive slow for datatypes with many layers of nesting.

B. Bringing HOL Closer to Category Theory

Let α F be a unary type constructor. Category theory
has elegant devices to define, based on F, the associated
datatype and codatatype by solving the equation α∼= α F (up
to isomorphism) in a minimal and maximal way, obtaining
the initial F-algebra and final F-coalgebra, respectively.
However, this requires F to be complemented by an action
on functions between types, usually called a “map.”

The universe of types U naturally forms a category
where the objects are types and the morphisms are func-
tions between types. We are interested in type constructors
(α1, . . . , αn) F that are also functors on U , i.e., that are
equipped with an action on morphisms commuting with
identities and composition. Taking advantage of polymor-
phism, this action can be expressed as a constant Fmap :
(α1→ β1)→ . . .→ (αn→ βn)→ α F→ β F satisfying

• Fmap id = id;
• Fmap (g1 ◦ f1) . . . (gn ◦ fn) = (Fmap g)◦ (Fmap f ).

Let us review some basic functors.
(n, α)-constant functor (Cn,α, Cmapn,α): The (n, α)-

constant functor (Cn,α, Cmapn,α) is the n-ary functor con-
sisting of the constant type constructor (β1, . . . , βn) Cn,α = α
and the constant map function Cmapn,α f1 . . . fn = id.

Sum functor (+,⊕): α1 + α2 consists of a copy Inl a1
of each element a1 : α1 and a copy Inr a2 of each element
a2 : α2. Given f1 : α1→ β and f2 : α2→ β, let [ f1, f2] : α1 +
α2 → β be the function sending Inl a1 to f1 a1 and Inr a2
to f2 a2. Given f1 : α1 → β1 and f2 : α2 → β2, let f1⊕ f2 :
α1 +α2→ β1 +β2 be [Inl◦ f1, Inr ◦ f2].

Product functor (×,⊗): Let fst : α1×α2→ α1 and snd :
α1×α2→ α2 denote the two standard projection functions.
Given f1 : α→ β1 and f2 : α→ β2, let 〈 f1, f2〉 : α→ β1×β2
be the function a 7→ ( f1 a, f2 a). Given f1 : α1→ β1 and f2 :
α2→ β2, let f1⊗ f2 : α1×α2→ β1×β2 be 〈 f1 ◦ fst, f2 ◦snd〉.
α-Function space functor (funcα, compα): Given a

type α, let β funcα = α→ β. For all f : β1→ β2, we define
compα f : β1 funcα→ β2 funcα as compα f g = f ◦g.

Powertype functor (set, image): The function image f :
α set→ β set sends each set A to the image of A through
the function f : α→ β.

k-Powertype functor (setk, imagek): Given a cardinal k,
for all types α, we define the type α setk by comprehension,
carving out from α set only those sets of cardinality < k.

While specific map functions are heavily used in HOL
theories (e.g., map, image), the theorem provers traditionally
do not record the functorial structure Fmap of F or take
advantage of it when defining datatypes. The next examples
illustrate the benefits of keeping such additional structure.

Finite lists: The unary type constructor list, which sends
each type α to the type α list of lists of α elements, is
categorically given as the initial algebra on the second
argument of the binary functor (F, Fmap), where (α, β) F =
unit+α×β and Fmap f g= id⊕ f ⊗g. More precisely, there
exists a (polymorphic) folding bijection fld : (α, α list) F→
α list making (fld, α list) the initial algebra for the unary
functor (α, _) F. Here, fld = 〈Nil, Cons〉, where Nil and Cons
are the familiar list operations. The initial algebra property
corresponds to the availability of the standard iterator for
lists. Then (list, map) is itself a unary functor.

Finitely branching trees of finite depth: The ability to
define lists is hardly a spectacular achievement. It is the
abstract interface to lists that makes category theory rel-
evant: (list, map) is simply another functor available for
nesting in (co)datatype definitions. Assume we want to
define finitely branching trees of finite depth. This involves
taking the initial algebra α treeF on the second argument
of the functor (G, Gmap), where (α, β) G = α× β list and
Gmap f g = f ⊗map g. The resulting iterator iter has the
polymorphic type (α× β list→ β)→ α treeF → β, and its
characteristic equation is iter s◦fld = s◦ (id⊗map (iter s)),
where fld is the folding bijection associated to α treeF

(Fig. 1). Thus, the “contract” of tree iteration reads as
follows: Given tree-like structure on β as the function
s : α×β list→ β (viewing β as consisting of “abstract trees,”
featuring an abstract tree constructor s), provide a function
iter s such that iter s (fld (a, trl)) = s (a, map (iter s) trl) for
all a : α and trl : (α treeF) list. The characteristic equation
of iter abstracts away completely from the definition of
lists, using instead the map interface for accessing lists,
thereby allowing truly modular nesting of recursive types
inside recursive definitions of larger types. Moreover, the
categorical approach gracefully handles nested recursion
through corecursion, as the next examples illustrate.



α× (α treeF) list
fld //

id ⊗ map (iter s)

��

α treeF

iter s

��
α×β list s // β

Fig. 1. Iterator for finitely branching trees of finite depth

β
s //

coiter s

��

α×β list

id ⊗ map (coiter s)

��
α tree I

unf // α× (α tree I) list

Fig. 2. Coiterator for finitely branching trees of possibly infinite depth

Finitely branching trees of possibly infinite depth: To
define trees of possibly infinite depth, we can take the
final coalgebra α tree I on the second argument of the
functor (G, Gmap) defined above. The resulting coiterator
coiter has polymorphic type (β→ α×β list)→ β→ α tree I,
and its characteristic equation is unf ◦ coiter s ∼= (id ⊗
map (coiter s)) ◦ s, where unf is the unfolding bijection
associated to α tree I (Fig. 2). Normally, we would split
unf in two functions as unf = 〈lab, sub〉, where, for any
tr : α tree I, lab tr : α is the label of the root and sub tr is the
list of its subtrees. Then, also splitting any s : β→ α×β list
similarly to unf in two functions L and C, the contract of
tree coiteration reads as follows: Given a tree-like structure
on β consisting of functions L : β→ α and C : β→ β list,
yield a function coiter〈C,L〉 such that lab (coiter〈C,L〉 b) = L b
and sub (coiter〈C,L〉 b) = map coiter〈C,L〉 (C b) for all b : β.

Unordered finitely branching trees of possibly infinite
depth: Assume that we want our finitely branching trees
to be unordered. Instead of lists, we can employ finite
sets (or even finite multisets). We can then define α tree I

as the final coalgebra of the functor (H, Hmap), where
(α, β) H = α×β fset and Hmap f g = f ⊗fimage g.

C. Bringing Category Theory Closer to HOL

Next we focus on devising a proper categorical setting to
accommodate (co)datatype definitions. Here is the system
of constraints for our desired class K of functors (perhaps
with additional structure) on the universe of types:

C1 K contains basic functors, including at least the
constant, sum, product, and function-space functors.

C2 All functors in K admit both (a) initial algebras and
(b) final coalgebras.

C3 Class K is closed under (a) initial algebras; (b) final
coalgebras; and (c) composition.

C4 The initial algebra and final coalgebra operations over
K are expressible in HOL.

In addition to the above nonnegotiable requirements, we
formulate a desideratum:

D K contains interesting non-free functors, such as the
bounded sets and multisets.

Among the basic functors mentioned in C1, constants, +,
and × are needed for constructing even simple datatypes,
whereas funcα enables infinite branching. The non-free
functors mentioned in D further extend (co)datatypes with
permutative structures, among which finite sets and multisets
are especially useful in computer science formalizations
(e.g., semantics of programming languages).

In C3, closure under initial algebras means the following,
say, for binary functors ((α, β) F, Fmap). If we fix an
argument, say, the first, then, by C2, for each fixed type α,
there exists the initial F-algebra on the second argument,
α IF, for which we can define a map operator IFmap. C3
requires that the unary functor (IF, IFmap) be in K . And
similarly for closure under final coalgebras.

C4 is required because we are committed to a definitional
framework. Otherwise, we could simply postulate the types
corresponding to initial and final coalgebras, together with
the necessary (co)iterators and their properties.

The literature does not appear to provide a complete
solution for the above system of constraints. An obvious
candidate, the class of ω-bicontinuous functors [22], satisfies
C1–C3 but not C4, because the associated limit construction
requires a logic that can express infinite type families (e.g.,
(unit Fn)n for the final coalgebra).

Many results from the literature are concerned only with a
given type of construction, and only with admissibility (C2),
ignoring closure (C3). Rutten’s monograph [31] focuses on
coalgebras. It describes a general class of functors on sets,
namely, those that preserve weak pullbacks and have a set
of generators, or, sufficiently, preserve weak pullbacks and
are bounded (in that there exists a cardinal upper bound for
the coalgebras generated by any singleton in any of their
coalgebras). The main issue with this class of functors is
admissibility of initial algebras (C2-a). Closure properties
(C3), which Rutten omits to discuss, might also be an issue.

Also focusing on coalgebra, Barr [4], [5] proves the
existence of a final coalgebra for accessible functors on sets
(i.e., functors preserving k-filtered colimits for some k). This
result is an internalization to sets of Aczel and Mendler’s
final coalgebra theorem [1] stated for set-based functors
on classes. Moreover, Barr produces a bound for the size
of the final coalgebra, assuming the existence of a certain
large cardinal. However, k-filtered colimits are incompatible
with C4 for the same reason ω-limit constructions do, and
internalizing the construction to a sufficiently large type
using the provided cardinal bound is also infeasible, because
it requires large cardinals whose existence is not provable in
HOL or even ZFC. (C2-a and C3 might also be problematic.)

A different result from Barr [4] states that any quotient
functor of an ω-bicontinuous functor admits a weakly final
coalgebra obtained from any weakly final coalgebra of
the latter. A subclass of ω-bicontinuous that admits HOL-
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Fig. 3. An element x of α F with Fset x = {a1, a2, a3}

expressible (co)datatype constructions could prove to be an
answer to C1–C4 via this result. In fact, the class K we
adopt in this paper includes the class K ′ of functors F that
are quotients of Fbd-function-space functors, with Fbd a
cardinal number depending on F. Whether K ′ is also a
solution to C1–C4 remains for us an open question.

Finally, Hensel and Jacobs [16] propose a modular devel-
opment of (co)datatypes for datafunctors, namely, functors
obtained from constants, +, and × by repeated applica-
tion of composition, initial algebra, and final coalgebra.
Datafunctors satisfy C1–C3 but ostensibly not C4, because
the arguments, which employ abstract results on categorical
logic and fibrations [17], rely on (co)limits.

IV. RICH TYPE CONSTRUCTORS

To accommodate constraints C1–C4 in HOL, we must
work in a strict cardinal-bounded fashion, always keeping in
sight a universe type able to host the necessary construction.
However, to stay flexible and not commit to a syntactically
predetermined class of functors, we cannot a priori fix a
universe type, as required by the Melham–Gunter approach.
For example, there is no type that can accommodate an
arbitrary iteration of the countable powertype construction.
Consequently, our functors will carry their cardinal bounds
with themselves.

A useful means to keep cardinality under control is
the consideration of a natural “atom” structure potentially
available for the HOL type constructors in addition to the
map structure. Namely (assuming F is unary), we consider
a polymorphic constant Fset : α F → α set, where Fset x
consists of all “atoms” of x; for example, if F is list, Fset
returns the set of elements in the list.

We think of the elements x of α F as consisting of
a shape together with a content that fills the shape with
elements of α, with Fset x returning this content in flattened
format, as a set (Fig. 3). This suggests that Fset should
be a natural transformation between the functors (F, Fmap)
and (set, image) (diagram in Fig. 4 commutative for all
f : α→ β). Fset allows us to internalize the type constructor
F to sets of elements of given types α. Namely, we define
Fin : α set→ (α F) set by Fin A = {x : α F. Fset x ⊆ A}.
The generalization to n-ary functors is straightforward, with
Fin A1 . . . An = {x : (α1, . . . , αn) F.

∧
i Fseti x ⊆ Ai}. In

particular, Fin α1 A2 = {x : (α1, α2) F. Fset2 x⊆ A2} (where
the first occurrence of α1 abbreviates Uα1 ).

Combining the map and set operators and suitable cardinal
bounds, we obtain the following key notion, presented here

α F
Fset //

Fmap f

��

α set

image f

��
β F

Fset // β set

Fig. 4. The “set” natural transformation

for the binary case. A binary rich type constructor (RTC) is
a tuple (F, Fmap, Fset, Fbd), where
• F is a binary type constructor,
• Fmap : (α1→β1)→ (α2→β2)→ (α1, α2) F→ (β1, β2) F,
• Fseti : (α1, α2) F→ αi set for i ∈ {1, 2},
• Fbd is an infinite cardinal number,

satisfying the following properties:
FUNC (F, Fmap) is a binary functor.
NAT1 For all α1, Fset1 is a natural transformation

between ((α1, _) F, Fmap) and (set, image).
NAT2 For all α2, Fset2 is a natural transformation

between ((_, α2) F, Fmap) and (set, image).
WP (F, Fmap) preserves weak pullbacks.

CONG If ∀a ∈ Fseti x. fi a = gi a for all i ∈ {1, 2}, then
Fmap f1 f2 x = Fmap g1 g2 x.

CBD The following cardinal-bound conditions hold:
a. ∀x : (α1, α2) F. |Fseti x| ≤ Fbd for i ∈ {1,2};
b. |Fin A1 A2| ≤ (|A1|+ |A2|+2)Fbd.

Binary functors suffice to illustrate the functorial structure
of the initial and final algebras, a structure that would be
trivial if we started with unary functors. (The definition of
n-ary RTCs is given in the appendix.)

Among the above conditions, FUNC and NATi were
already explained and motivated. WP is a technical con-
dition allowing a smooth treatment of bisimilarity relations,
relevant for coinduction and corecursion [31]; unlike other
(weak) limits, weak pullbacks involve a finite number of
types and are hence expressible in HOL. CONG states that
Fmap f1 f2 x is uniquely determined by the action of fi on
the atoms of x, Fseti x—it ensures that Fmap behaves well
with respect to Fin. Finally, the cardinality conditions put
bounds on the branching (CBD-a) and on the number of
elements (CBD-b) of the functor (F, Fmap), and can be
understood in terms of shape and content. Thus, CBD-a
states that the F-shapes have no more than Fbd slots for
contents. Moreover, CBD-b states that shapes are not too
redundant, so that all possible combinations of shape and
content do not exceed the number of assignments of contents
to slots, A1 +A2→ Fbd. (The +2 addition is a technicality
that covers the case where A1 = A2 = /0). We are now ready
to state the main theoretical result of this paper:

Theorem 1: The class of RTCs satisfies constraints C1–
C4 and desideratum D.

Proof sketch: We must show that certain basic type
constructors form RTCs and that the operations of compo-
sition, initial algebra and final coalgebra exist in HOL and



have themselves an RTC structure. Sects. A–F below are
dedicated to these tasks.

A. Basic Type Constructors

Sect. III-B described the basic constructors’ map structure.
We now present their set structure and cardinal bound,
guided by our “shape and content” intuition.
• F = Cn,α: Fset x = /0; Fbd = ℵ0.
• F =+: Fset1 (Inl a1) = {a1}, Fset2 (Inl a1) = /0,

Fset1 (Inr a2) = /0, Fset2 (Inr a2) = {a2}; Fbd = ℵ0.
• F =×: Fset1 (a1, a2) = {a1}, Fset2 (a1, a2) = {a2};

Fbd = ℵ0.
• F = funcα: Fset1 g = image g α; Fbd = max (|α| , ℵ0).
• F = set: Fset x = x; set is not an RTC though, due to

the absence of a proper bound.
• F = setk: Fset x is the set corresponding to x via the

embedding of α setk into α set; Fbd = max (k, ℵ0).

B. Composition

For composition, we focus on the binary–unary case
(without loss of generality). Given unary RTCs Fi =
(Fi, Fmapi, Fseti, Fbdi) with i ∈ {1, 2} and a binary RTC
G = (G, Gmap, Gset, Gbd), their composition is the unary
RTC H = G ◦ (F1,F2) defined as follows:
• (H, Hmap) is the functorial composition of (G, Gmap)

with (Fi, Fmapi);
• Hset y =

⋃
x∈Gset1 y Fset1 x ∪

⋃
x∈Gset2 y Fset2 x;

• Hbd = Gbd∗ (Fbd1 +Fbd2).
Although we seldom emphasize its role, composition is

a pervasive auxiliary operation in interesting (co)datatype
definitions. For example, the list-defining RTC (α, β) F
discussed in Sect. III-B is a composition of basic RTCs.

C. Relators

A key insight due to Rutten [30] is that, thanks to WP,
the functor (F, Fmap) has a natural extension to a relator,
i.e., a functor on the category of types and binary relations,
denoted R. We can express the relator action of F as a
polymorphic constant Frel : (α1×α2) set→ (β1×β2) set→
((α1, α2) F× (β1, β2) F) set defined as Frel Q R = {(Fmap
fst fst z, Fmap snd snd z). z ∈ Fin Q R}.

For reasoning in HOL, it is convenient to take an al-
ternative (equivalent) view of Frel, as an action on curried
binary predicates Fpred : (α1→ α2→ bool)→ (β1→ β2→
bool)→ (α1, α2) F→ (β1, β2) F→ bool. Fpred ϕψ should be
regarded as the componentwise extension of the predicates
ϕ and ψ. For example:
• if F is the product functor, Fpred ϕ1 ϕ2 (a1, a2) (b1, b2)
⇐⇒ ϕ1 a1 b1 ∧ ϕ2 a2 b2;

• if F is the sum functor, Fpred ϕ1 ϕ2 a b⇐⇒ (∃a1 b1. a =
Inl a1 ∧ b= Inl b1 ∧ ϕ1 a1 b1)∨ (∃a2 b2. a= Inr a2 ∧ b=
Inr b2 ∧ ϕ2 a2 b2).

Fin β A1
s1 //

Fmap id f

��

A1

f

��
Fin β A2

s2 // A2

Fin β A1

Fmap id f

��

A1
s1oo

f

��
Fin β A2 A2

s2oo

Fig. 5. Algebra morphism (left) and coalgebra morphism (right)

D. The Categories of (Co)algebras

For this and the next two subsections, we fix a binary
RTC F = (F, Fmap, Fset, Fbd). We first show how to
construct in HOL the initial algebra (or, dually, the final
coalgebra) on the second argument—that is, the minimal
solution α IF (or maximal solution α JF) of the equation
α∼= (β, α) F. (The general constructions involve n (m+n)-
ary RTCs Fi with type constructors (β, α) Fi and yield n
m-ary RTCs IF1, . . . ,IFn (or JF1, . . . ,JFn) with their
type constructors of the form β IFi (or β JFi).)

Abstractly, the theories of algebras and of coalgebras are
dual, allowing a unified treatment of the basic (co)algebraic
concepts. However, since the category of types is not self-
dual, concrete constructions are often specific to each.

We fix a type β. A (β-)algebra is a pair A = (A, s) where:
• A : α set is the carrier set of A (and α is the underlying

type of A ),
• s : (β, α) F→ α is the structural function of A ,

such that A is closed under s, in that ∀x ∈ Fin β A. s x ∈ A
(and thus we may regard s as a function s : Fin β A→ A).
Dually, a (β-)coalgebra is given by a pair (A : α set, s :
α → (β, α) F) such that ∀x ∈ A. s x ∈ Fin β A. Algebras
form a category where morphisms f : A1 = (α1, A1, s1)→
A2 = (α2, A2, s2) are functions f : α1 → α2 such that the
diagram on the left of Fig. 5 is commutative, and dually for
coalgebras and the diagram on the right.

In the category of algebras, one can form products of
families of algebras having the same underlying type, the
carrier set of the product being the product of the carrier sets
of the components. Dually, one can form sums of families
of coalgebras using sums of sets. An algebra A is called
initial if for all algebras A ′ there exists a unique morphism
f : A → A ′, and weakly initial if we omit the uniqueness
requirement. Dually, a coalgebra is final if it admits a unique
morphism from any other coalgebra, and weakly final if
uniqueness is dropped.

We are looking for a type constructor β IF (dually, β JF)
and function fld : (β, β IF) → β IF (dually, unf : β JF →
(β, β JF)) such that the algebra (β IF, fld) is initial (dually,
the coalgebra (β JF, unf) is final).

Typically, such a (co)algebra is obtained in two phases:
1. Construction of a weakly initial algebra (weakly final

coalgebra) C.
2. Construction of an initial algebra (final coalgebra) as

a subalgebra (quotient coalgebra) of C.



In the next two subsections, we discuss the key aspects of
these constructions in HOL, both times starting with the
simpler phase 2.

E. Initial Algebra

Initial algebra from weakly initial algebra: Given an
algebra A = (A, s), let Ms be the intersection of all sets B
such that (B, s) is an algebra, and let M (A ), the minimal
subalgebra of A , be (Ms, s). It is immediate that there exists
at most one morphism from M (A ) to any other algebra.
Then, given a weakly initial algebra C, the desired initial β-
algebra is its minimal subalgebra, M (C ). Of course, M (C )
depends on β (which was fixed all along). Now β IF is
introduced by a type definition, carving out the underlying
set of M (C ) as a new type, and the folding map fld is
defined by copying on β IF the structural map of M (C ) (so
that in effect (β IF, fld) becomes isomorphic to M (C )).

Construction of a weakly initial algebra: This relies on a
crucial lemma about the cardinality of minimal subalgebras,
whose proof (given in the appendix) employs the RTC
cardinality assumptions CBD.

Lemma 2: Let s : (β, α) F→α. Then |Ms| ≤ (|β|+2)Suc Fbd

(where Suc Fbd is the successor cardinal of Fbd).
Let Θ be the set of all algebras A having as underlying

type a type γ of sufficiently large cardinality, (|β|+2)Suc Fbd;
such a type exists, and in fact can be taken to be the very
underlying type of this cardinal. The desired weakly initial
algebra C is the product of all algebras in Θ. Indeed, by
Lemma 2, for any algebra B, its minimal subalgebra M (B)
is isomorphic to one in Θ, to which C has a projection
morphism. This gives a morphism from C to M (B), hence
also one from C to B. We have thus proved:

Prop. 3: (β IF, fld) is the initial β-algebra.
This yields an iterator iter : ((β, α) F→ α)→ β IF→ α

such that iter s◦fld = s◦Fmap id (iter s) (cf. Fig. 1).
Structural induction: The set structure Fset of an RTC not

only plays an auxiliary role in the datatype constructions but
also provides a simple means to express induction abstractly,
for arbitrary functors. Since fld is a bijection, for any
element b ∈ β IF there is a unique y ∈ (β, β IF) F such that
b = unf y—this is an abstract version of case analysis. Then
the inductive components of b are precisely the elements of
Fset2 y, and we have the following induction principle:

Prop. 4: Let ϕ : β IF → bool and assume ∀y. (∀b ∈
Fset2 y. ϕ b)⇒ ϕ (fld y). Then ∀b. ϕ b.

For F = unit+β×α with IF = list (Sect. III-B), the above
is equivalent to the familiar induction principle.

RTC structure: It is standard to define a functorial struc-
ture for the initial algebra, namely IFmap f = iter (fld ◦
(Fmap f id)). As for the set structure, consider b ∈ β IF.
Intuitively, IFset b should contain all the Fset1 atoms of b,
then the Fset1 atoms of its inductive components, and so
on, iteratively. Moreover, as we have seen, delving into the

(β, β IF) F
fld //

Fmap id IFset

��

β IF

IFset

��
(β, β set) F

collect // β set

Fig. 6. Set structure for IF

inductive components is achieved by means of Fset2. We
are led to defining IFset as iter collect, i.e., as the unique
function making the Fig. 6 diagram commutative, where
collect a = Fset1 a ∪

⋃
Fset2 a.

Prop. 5: (IF, IFmap, IFset, 2Fbd) is an RTC.
As an RTC, IF is also a relator (Sect. C). Importantly for

modular reasoning however, we can express IFpred directly
in terms of Fpred. Thus, IFpred is uniquely determined
by the recursive equations IFpred ϕ (fld x1) (fld x2) ⇐⇒
Fpred ϕ (IFpred ϕ) x1 x2. For example, for the list functor,
the above equation splits in the following, according to the
relator structure of the component functors (unit, +, and ×):
• list_pred ϕ Nil Nil⇐⇒ True,
• list_pred ϕ Nil (Cons b bs)⇐⇒ False,
• list_pred ϕ (Cons a as) Nil⇐⇒ False,
• list_pred ϕ (Cons a as) (Cons b bs)⇐⇒
ϕ a b ∧ list_pred ϕ as bs,

revealing list_pred as the componentwise ordering on lists.

F. Final Coalgebra

Final coalgebra from weakly final coalgebra: This fol-
lows by the standard coalgebraic theory of bisimulation
relations [31]. A bisimulation on a coalgebra A = (A, s)
is a relation R ⊆ A × A such that ∀(a, b) ∈ R. ∃z ∈
Fin β R. Fmap id fst z = a ∧ Fmap id fst z = b, i.e., such
that in Fig. 7 (left) there exists a function along the dotted
arrow making the two diagrams commutative. This abstract
concept covers the natural ad hoc notions of bisimulation for
concrete functors [31]. A bisimulation R is in effect an endo-
morphism on A in the types-and-relations category R such
that (a, b) ∈ R implies (s a, s b) ∈ Frel Id R—Fig. 7 (right).
Hence composition of bisimulations is a bisimulation, and
then it follows easily that the largest bisimulation LB(A )
on a coalgebra A is an equivalence relation, and that the
resulting quotient coalgebra A /LB(A ) has the property that
any coalgebra has at most one morphism to it.

Now let C be a weakly final coalgebra. By the above
discussion, via an argument dual to the corresponding one
for algebras, we have C /LB(C ) final and based on it we define
the desired type β JF and its unfolding bijection unf.

Construction of a weakly final coalgebra: The abstract
construction indicated in Rutten [31], as the sum of all
coalgebras over a sufficiently large type (roughly dual to
our weakly initial algebra construction), is possible in HOL
thanks to our cardinality provisos. However, a more concrete
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Fig. 7. Bisimulation

construction gives us a better grip on cardinality, allowing
us to check the RTC properties for the resulting coalgebra.

To lighten the presentation, we next identify sets with
types—for example, we allow ourselves to apply type
constructors such as list to sets. Given a prefix-closed
subset Kl of Fbd list and kl ∈ Kl, we let SucKl,kl, the
set of Kl-successors of kl, be {kl @ [k]. kl @ [k] ∈ Kl},
where @ denotes list concatenation and [k] the k-singleton
list. We define an Fbd-tree to be a pair (Kl, tr), where
Kl ⊆ Fbd list is prefix closed and tr : Kl → Fin β Fbd
is such that ∀kl ∈ Kl. Fset2 (tr kl) = SucKl,kl. Thus, Fbd-
trees are at most Fbd-branching trees labeled as follows:
Every node is labeled with an element of Fin β Fbd whose
set of second-argument atoms consists of precisely the
node’s emerging branches. Given a tree (Kl, tr), we define
sub(Kl,tr) : {k. [k]∈Kl}→C to send each k to the immediate
k-subtree of (Kl, tr), more precisely, sub(Kl,tr) k = (Kl ′, tr′),
where Kl ′ = {kl ′. [k]@ kl ′ ∈ Kl} and tr′ : Kl ′ → Fin β Fbd
is defined by tr′ kl ′ = tr ([k]@ kl ′).

The set C of Fbd-trees can be naturally organized as a
coalgebra C = (C, s) defining s (Kl, tr) = Fmap id sub(Kl,tr)
(tr Nil). Thus, s (Kl, tr) operates on (Kl, tr)’s root label
tr Nil, substituting in its shape the immediate subtrees for the
contents. Then C is shown to be a weakly final coalgebra
by roughly the following argument. For each element a in
an algebra (A, t), one defines its behavior tree by iterating
the unfolding of a according to t—first a, then t a, then t b
for all b ∈ Fset2 (t a), and so on. Thanks to CBD-a, such
trees are at most Fbd-branching, hence representable in C.
We have thus proved:

Prop. 6: (β JF, unf) is the final β-coalgebra.

This yields a coiterator coiter : (α→ (β, α) F)→ α→ β JF
such that unf (coiter s) = Fmap id (coiter s)◦ s (cf. Fig. 2).

Structural coinduction: Since LB(C ) is the greatest bi-
simulation on C , it follows that Id is the greatest bisim-
ulation on the quotient coalgebra C /LB(C ). This gives us
the following coinduction principle on (β JF, unf) (which
is a copy of C /LB(C )): If R is a bisimulation relation, then
R ⊆ Id. Viewing bisimilarities via the relator structure (cf.
Fig. 7, left) and using the predicate notation, we can rephrase
the coinduction principle as follows:

Prop. 7: Let ϕ : β JF → β JF → bool and assume
∀a b. ϕ a b⇒ Fpred Eq ϕ (unf a) (unf b) (where Eq : β→
β→ bool is the equality predicate). Then ∀a b. ϕ a b⇒ a= b.

RTC structure: Again, the functorial structure of the
final coalgebra is standard, namely, JFmap f = coiter
((Fmap f id) ◦ unf). Moreover, JFset can be defined by
collecting all the Fset1 results of repeated unfolding, namely
Fset1 a =

⋃
i∈nat collecti,a, where collecti,a is defined recur-

sively on i as follows: collect0,a = /0; collecti+1,a = Fset1
(unf a) ∪

⋃
{collecti,b. b ∈ Fset2 (unf a)}. Similarly to

IFpred, the relator JFpred can be described in terms of
Fpred, by JFpred ϕ a1 a2 ⇐⇒ Fpred ϕ (JFpred ϕ) (unf a1)
(unf a2).

Prop. 8: (JF, JFmap, JFset, FbdFbd) is an RTC.

V. FORMALIZATION AND IMPLEMENTATION

The results in this paper are formalized in Isabelle/HOL
and implemented in ML as a prototypical definitional pack-
age, together with a few examples of applications. This
development is publicly available [32].

A. Formalized Metatheory

Isabelle/HOL proved well suited for formalizing category
theory over types, with relevant concepts, including functor
and natural transformation, handled in a lightweight, family-
free notation as polymorphic types or constants. The main
(co)algebraic constructions of this paper correspond to the
theories named LFP and GFP in our formal development.

These constructions require a theory of cardinals in HOL,
including cardinal arithmetic and regular cardinals. Simple
type theory does not cater for ordinals as a canonical
collection of well-orders, a very convenient concept for the
standard theory of cardinals. Therefore, we worked with
well-orders directly, dispersed polymorphically over types,
with cardinals defined as well-orders minimal with respect to
initial-segment embeddings. This theory and its challenges
are presented separately [29].

B. Definitional Package

Theorem 1 and its formalization form the basis of a
new (co)datatype package for Isabelle/HOL. Users define
(co)datatypes using an intuitive high-level specification syn-
tax; internally, the package ensures that each specification
corresponds to an RTC, defines the (co)datatype, and proves
that the result is itself an RTC.

More specifically, each RTC is represented by an ML
record consisting of the polymorphic constants and their
properties as proved theorems, stored in Isabelle’s theory
database [36, §4.1]. The basic RTCs for unit, +, ×, funcα,
fset, countable sets, and finite multisets are constructed in
user space, as they do not require ML; users can construct
and register custom RTCs in the same way.

In the simple (nonmutual) case, the package parses the
right-hand side of a (co)datatype specification as a com-
position F of already defined RTCs and proves that itself
forms an RTC as in Sect. IV-B. Then the package defines the



initial algebra or final coalgebra for F and establishes au-
tomatically their characteristic theorems (for (co)recursion,
(co)induction, etc.) and RTC structure as in Sect. IV-E or
IV-F. All these are performed by specially tailored Isabelle
tactics, whose running time is independent of the amount of
nesting (unlike for the Melham–Gunter approach).

C. Example

We demonstrate the definitional package on the type of
finitely branching trees of possibly infinite depth [32]:

codatatype α tree I = Node (lab: α) (sub: (α tree I) list)

The declaration syntax allows named selectors (lab and sub).

The command derives the expected characteristic theorems
for α tree I, including the coinduction rule

ϕ x y
∀a b. ϕ a b ⇒ lab a = lab b ∧ list_pred ϕ (sub a) (sub b)

x = y
where list_pred ϕ is the componentwise extension of ϕ to
lists (Sect. IV-E). Corecursive (coiterative) functions can be
defined using a convenient syntax; for example, tree reversal
is specified below in terms of map and rev on lists:

corec trev where
lab (trev t) = lab t
sub (trev t) = rev (map trev (sub t))

Using the tree coinduction rule and Isabelle’s automation,
we can prove the following lemma with a one-line proof:

lemma trev (trev t) = t
The (co)datatype package interacts seamlessly with the

existing infrastructure for reasoning about (co)inductive
predicates (defined via Knaster–Tarski), as illustrated by the
following proof of König’s lemma for α tree I. We first need
a stream type to represent infinite paths in a tree:

codatatype α strm = SCons (hd: α) (tl: α strm)

Using the existing coinductive package, we can define
the notions of an infinite tree and a proper path in a
tree as greatest predicates satisfying the equations infinite t
⇐⇒ (∃u ∈ set (sub t). infinite u) and proper_path p t ⇐⇒
hd p = lab t ∧ (∃u ∈ set (sub t). proper_path (tl p) u). The
corecursive function kpath uses Hilbert choice (ε) to return
a witness infinite path:

corec kpath where
hd (kpath t) = lab t
tl (kpath t) = kpath (εu. u ∈ set (sub t) ∧ infinite u)

We can then prove the desired lemma by coinduction:
lemma infinite t⇒ proper_path (kpath t) t

VI. FURTHER RELATED WORK

Interactive theorem provers include various mechanisms
for introducing new types, whether primitive (intrinsic),
axiomatic, or definitional [6, p. 3]. In the world of HOL,
the primitive type definition mechanism (Sect. II-A) and the

datatype package (Sect. III-A) are the most widely used, but
there are many others. Homeier [18] developed a package to
define quotient types in HOL4, now ported to Isabelle [21].
Nominal Isabelle [33] extends HOL with infrastructure for
reasoning about datatypes containing name binders; Urban
is rebasing it on the quotient package, possibly in unison
with our (co)datatype package, exploiting the support for
non-free constructors. HOLCF, a HOL library for domain
theory, has long included an axiomatic package for defining
(co)recursive domains; Huffman [20] recast it into a purely
definitional package, based on a large enough universal
domain—a simplification that unfortunately is not available
for general HOL datatypes. The package combines many of
the categorical ideas present in our work, notably the mod-
ular mixture of recursion via enriched constructors. Some
ideas have yet to be automated in a definitional package:
Völker [34] sketches a categorical approach to datatypes
that prefigures our work; Vos and Swierstra [35] elaborate
an ad hoc construction for recursion through finite sets; and
Paulson [27] designed building blocks for codatatypes.

PVS, whose logic is a simple type theory extended with
dependent types and subtyping (but without polymorphism),
provides monolithic axiomatic packages for datatypes [26]
and codatatypes [11]. Hensel and Jacobs [16] illustrate
the categorical approach to (co)datatypes in PVS by ax-
iomatic declarations of various flavors of trees (including
our treeF and tree I) with associated (co)iterators and proof
principles. HOLω, which extends HOL4 with higher-rank
polymorphism, provides a safe primitive for introducing
abstractly specified types [19]. Isabelle/ZF, based on ZFC,
reduces (co)datatypes to (co)inductive predicates [28], with
no support for mixed (co)recursion; for codatatypes, it relies
on a concrete, definitional treatment of non-well-founded
objects. In Agda and Coq, (co)datatypes are built into the
underlying calculus. Mixed (co)recursion is possible [24] but
not the combination with non-free types.

VII. CONCLUSION

We presented a theoretical framework for defining types
in higher-order logic. The framework relies on the abstract
notion of a rich type constructor (RTC), consisting of a
type constructor plus further categorical structure. RTCs are
closed under composition and (co)algebraic fixpoints, pro-
viding all the necessary ingredients to define (co)datatypes.

Our solution is foundational: The characteristic (co)data-
type theorems are derived from an internal construction,
rather than stated as axioms. Unlike the traditional Melham–
Gunter approach, our solution is also fully compositional,
enabling mutual and nested (co)recursion involving arbitrary
combinations of datatypes, codatatypes, and custom RTCs.

There is a large body of previous work on (co)datatypes
as (co)algebras in category theory. Our main contribution
has been to adapt this work to achieve compatibility with
HOL’s restrictive type system. Our ideas are implemented



in a prototypical definitional package for Isabelle/HOL. The
package is expected to be included in the next official release
of the theorem prover, making Isabelle the first HOL-based
prover with general support for codatatypes and thereby
answering a long-standing user request.

After implementing the original datatype package for
Isabelle, Berghofer and Wenzel [6] suggested three areas for
future work: codatatypes, non-freely generated types, and
composition of definitional packages. Thirteen years later,
their vision is very close to a full materialization. Although
we focused on Isabelle, our approach is equally applicable
to the other HOL-based theorem provers, such as HOL4 [9]
HOL Light [15], and ProofPower–HOL [3].

Methodologically, we found that category theory helped
us develop intuitions about the types of HOL, recasting
them as richly structured objects rather than mere collections
of elements. As a continuation of this program, we want
to rebuke the myth that parametricity is inapplicable to
HOL, by extending RTCs with a parametricity predicate
and exploiting their relator nature. We also intend to ac-
commodate further category theory insight into the world of
theorem provers, such as the (co)induction mixture presented
in Jacobs et al. [16], [17].
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APPENDIX

A. Coinduction up to Equality

Coinduction “up to equality” is a syntactic strengthening
of the raw coinduction principle of Prop. 7 that reduces the
coinduction proof task to disjunction with equality.

Prop. 9: Let ϕ : β JF→ β JF→ bool and assume ∀a b.
ϕ a b⇒ Fpred Eq (ϕ | Eq) (unf a) (unf b), where Eq : β→
β→ bool is equality and ‘|’ denotes disjunction of binary
predicates. Then ∀a b. ϕ a b⇒ a = b.

B. (Co)recursion versus (Co)iteration

(Co)recursion is a more powerful definition principle than
(co)iteration, allowing, at (co)recursion time, the consider-
ation of not only elements of the target type (i.e., results
computed so far), but also the original values of the source
type (Figs. 8 and 9). For example, the predecessor function
on natural numbers cannot be defined by iteration without
introducing auxiliary arguments, but it is definable by a
trivial recursion.

C. Proof of Lemma 2

Lemma 2: Let s :(β,α) F→α. Then |Ms| ≤ (|β|+2)Suc Fbd.
Proof: The definition of Ms “from above,” as an inter-

section, is not helpful for establishing a cardinal bound.
We need an alternative construction of Ms “from below,”
as a union. For this, we define the family (Ki)i<Suc Fbd by
transfinite recursion as follows:
• Ki =

⋃
j<i K j, if i is a limit ordinal (thus, K0 = /0);

• Ki+1 = Ki∪{s x. Fset2 x⊆ Ki}.
Let K∞ =

⋃
i<Suc Fbd Ki. We must prove Ms = K∞. First,

K∞ ⊆ Ms follows easily by induction on i using that Ms is
an algebra. For the harder inclusion K∞ ⊆ Ms, it suffices to
show that K∞ is an algebra. Let x be such that x ∈ Fin β K∞,
i.e., Fset2 x⊆ K∞. Since Suc Fbd is a regular cardinal and,
by CBD-a, |Fset2 x| < Suc Fbd, we obtain i < Suc Fbd such
that Fset2 x ⊆ Ki. Hence s x ∈ Ki+1 ⊆ K∞. It then suffices
to show |K∞| ≤ (|β|+ 2)Suc Fbd. The stronger property ∀i <
Suc Fbd. |Ki| ≤ (|β|+ 2)Suc Fbd follows by induction on i,
via CBD-b and cardinal arithmetic.

D. Weak Pullbacks

We use a definition of weak pullbacks that restricts the
participating functions on given sets. We define the predicate
wpull A B1 B2 f1 f2 p1 p2 to hold iff for all b1 ∈ B1, b2 ∈ B2
if f1 b1 = f2 b2 holds, then there exist an a ∈ A such
that p1 a = b1 ∧ p2 a = b2. Thus, the WP property of a
binary RTC says that if wpull A1 B11 B21 f11 f21 p11 p21
and wpull A2 B12 B22 f12 f22 p12 p22 hold, then so does
wpull (Fin A1 A2) (Fin B11 B12) (Fin B21 B21) (Fmap f11 f12)
(Fmap f21 f22) (Fmap p11 p12) (Fmap p21 p22).

Our definition is weaker than the standard notion from
literature [31], since it does not require p1, p2, f1, and f2
to form a commutative diagram.



(α, α IF) F
fld //

Fmap id (iter s)

��

α IF

iter s

��
(α, β) F

s // β

(α, α IF) F
fld //

Fmap id 〈id, rec s〉

��

α IF

rec s

��
(α, α IF×β) F s // β

Fig. 8. Iterator (left) and recursor (right) for the initial algebra α IF

β
s //

coiter s

��

(α, β) F

Fmap id (coiter s)

��
α JF

unf // (α, α JF) F

β
s //

corec s

��

(α, β+α JF) F

Fmap id ([corec s, id])

��
α JF

unf // (α, α JF) F

Fig. 9. Coiterator (left) and corecursor (right) for the final coalgebra α JF

E. n-Ary Rich Type Constructors

Definition: An n-ary rich type constructor is a tuple (F,
Fmap, Fset, Fbd), where
• F is an n-ary type constructor,
• Fmap : (α1→β1)→·· ·→ (αn→βn)→ (α1, . . . , αn) F→
(β1, . . . , βn) F,

• Fseti : (α1, . . . , αn) F→ αi set for i ∈ {1, . . . , n},
• Fbd is an infinite cardinal number,

satisfying the following properties for i ∈ {1, . . . , n}:
FUNC (F, Fmap) is a binary functor.
NATi For all α1, . . . , αi−1, αi+1, . . . , αn, Fseti is a

natural transformation between ((α1, . . . , αi−1, _,
αi+1, . . . , αn) F, Fmap) and (set, image).

WP (F, Fmap) preserves weak pullbacks.
CONG If ∀a ∈ Fseti x. fi a = gi a for all i ∈ {1, . . . , n},

then Fmap f1 . . . fn x = Fmap g1 . . . gn x.
CBD The following cardinal-bound conditions hold:

a. ∀x : (α1, . . . , αn) F. |Fseti x| ≤ Fbd
for all i ∈ {1, . . . , n};

b. |Fin A1 . . . An| ≤ (|A1|+ . . .+ |An|+2)Fbd.
Composition: Given m-ary RTCs Fi = (Fi, Fmapi, Fseti,

Fbdi) with i ∈ {1, . . . , n} and an n-ary RTC G = (G, Gmap,
Gset, Gbd), their composition is the m-ary RTC H = G ◦
(F1, . . . ,Fn) defined as follows:
• (H, Hmap) is the functorial composition of (G, Gmap)

with (Fi, Fmapi);
• Hset j y =

⋃n
i=1

⋃
x∈Gseti y Fseti

j x for j ∈ {1, . . . , m};
• Hbd = Gbd∗ (Fbd1 + . . .+Fbdn).
In general, the RTCs F i may have different arities mi.

This case is reducible to the above definition of composition
using lifting of RTCs. Any m-ary RTC F can be lifted to
an (m+1)-ary RTC by simply setting Fsetm+1x = /0.

Furthermore, the variables of the type constructors Fi need
not be disjoint. For the composition of (γ1, γ2) G = γ1 +
γ2 with α2 F1 = α2 funcα1 and (α1, α2) F2 = α1×α2, the
result is a unary type constructor parameterized by α1, i.e.,
α2 Hα1 = (α1→ α2)+(α1×α2). The type variable α1 does
not appear in the composed type constructor because it is
is a parameter and not a type variable of F1. Therefore, a
forgetful RTC operation that turns (α1, α2) F2 into α2 F′ is
needed. We define the kill operation on an m-ary RTC F ,
resulting in an (m− 1)-ary RTC by forgetting Fset1 and
setting Fmap′ = Fmap id. To obtain CBD-b for F′, we must
also adjust the cardinal bound: Fbd′ = |α1| ∗Fbd.


